Authors:
J. Maul LACOM/INCTMN, Departamento de Química, CCEN, UFPB, João Pessoa, PB, Brazil

Search for other papers by J. Maul in
Current site
Google Scholar
PubMed
Close
,
A. S. Brito LACOM/INCTMN, Departamento de Química, CCEN, UFPB, João Pessoa, PB, Brazil

Search for other papers by A. S. Brito in
Current site
Google Scholar
PubMed
Close
,
A. L. M. de Oliveira LACOM/INCTMN, Departamento de Química, CCEN, UFPB, João Pessoa, PB, Brazil

Search for other papers by A. L. M. de Oliveira in
Current site
Google Scholar
PubMed
Close
,
S. J. G. Lima LSR, Depto de Engenharia Mecânica/CT, UFPB, João Pessoa, PB, Brazil

Search for other papers by S. J. G. Lima in
Current site
Google Scholar
PubMed
Close
,
M. A. M. A. Maurera LACOM/INCTMN, Departamento de Química, CCEN, UFPB, João Pessoa, PB, Brazil

Search for other papers by M. A. M. A. Maurera in
Current site
Google Scholar
PubMed
Close
,
D. Keyson LACOM/INCTMN, Departamento de Química, CCEN, UFPB, João Pessoa, PB, Brazil

Search for other papers by D. Keyson in
Current site
Google Scholar
PubMed
Close
,
A. G. Souza LACOM/INCTMN, Departamento de Química, CCEN, UFPB, João Pessoa, PB, Brazil

Search for other papers by A. G. Souza in
Current site
Google Scholar
PubMed
Close
, and
I. M. G. Santos LACOM/INCTMN, Departamento de Química, CCEN, UFPB, João Pessoa, PB, Brazil

Search for other papers by I. M. G. Santos in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Copper monoxide (CuO) was successfully obtained by microwave-assisted hydrothermal method, using different conditions—in a solution without base, in a solution alkalinized with NaOH or with NH4OH. The powders were analyzed by thermal analysis (TG/DTA), X-ray diffraction (XRD), infrared spectroscopy, UV–Visible spectroscopy, and scanning electronic microscopy. XRD results showed that CuO was obtained with monoclinic structure and without secondary phases. Thermal analysis and infrared spectra indicated the presence of acetate groups on the powder surface. TG curves also showed a mass gain assigned to the Cu(I) oxidation indicating that a reduction possibly occurred during synthesis. The high and broad absorption band in the UV–Vis spectroscopy from 250 to 750 nm indicated the coexistence of Cu(II) and Cu(I), confirming the Cu(II) reduction, inside the CuO lattice. It was also possible to confirm the Cu(II) reduction by a displacement of the Me–O vibration bands observed in the IR spectra at around 500 cm−1.

  • 1. Han, WK, Choi, JW, Hwang, GH, Hong, SJ, Lee, JS, Kang, SG. Fabrication of Cu nanoparticles by direct electrochemical reduction from CuO nanoparticles. Appl Surf Sci. 2006;252:28322838. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2. Zhang, M, Xu, X, Zhang, M. Hydrothermal synthesis of sheaf-like CuO via ionic liquids. Mater Lett. 2008;62:385388. .

  • 3. Wold, A, Dwight, K. Solid state chemistry: synthesis, structure and properties of selected oxides and sulfides. New York: Chapman & Hall; 1993.

    • Search Google Scholar
    • Export Citation
  • 4. Keyson, D, Volanti, DP, Cavalcante, LS, Simões, AZ, Varela, JA, Longo, E. A simple wet-chemical synthesis and characterization of CuO nanorods. Mater Res Bull. 2008;43:771775. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5. Volanti, DP, Keyson, D, Cavalcante, LS, Simões, AZ, Joya, MR, Longo, E, Varela, JA, Pizani, PS, Souza, AG. Synthesis and characterization of CuO flower-nanostructure processing by a domestic hydrothermal microwave. J Alloy Compd. 2008;459:537542. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6. Xu, X, Zhang, M, Feng, J, Zhang, M. Shape-controlled synthesis of single-crystalline cupric oxide by microwave heating using an ionic liquid. Mater Lett. 2008;62:27872790. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7. Wang, WW, Zhu, YJ, Cheng, GF, Huang, YH. Microwave-assisted synthesis of cupric oxide nanosheets and nanowhiskers. Mater Lett. 2006;60:609612. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8. Wang, H, Xu, JZ, Zhu, JJ, Chen, HY. Preparation of CuO nanoparticles by microwave irradiation. J Cryst Growth. 2002;244:8894. .

  • 9. Chang, X, Ji, G, Shen, K, Pan, L, Shi, Y, Zheng, Y. Fabrication of nanowire-like cuprous oxide in aqueous solutions of a triblock copolymer. J Alloy Compd. 2009;482:240245. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10. Nagase, K, Zheng, Y, Kodama, Y, Kakuta, J. Dynamic study of the oxidation state of copper in the course of carbon monoxide oxidation over powdered CuO and Cu2O. J Catal. 1999;187:123130. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11. Xu, Y, Chen, D, Jiao, X. Fabrication of CuO pricky microspheres with tunable size by a simple solution route. J Phys Chem B. 2005;109:1356113566. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12. Lefez, B, Souchet, R, Kartouni, K, Lenglet, M. Infrared reflection study of CuO in thin oxide films. Thin Solid Films. 1995;268:4548. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13. Zhu, J, Chen, H, Liu, H, Yang, X, Lu, L, Wang, X. Needle-shaped nanocrystalline CuO prepared by liquid hydrolysis of Cu(OAc)2. Mater Sci Eng A. 2004;384:172176. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14. Qu, Y, Li, X, Chen, G, Zhang, H, Chen, Y. Synthesis of Cu2O nano-whiskers by a novel wet-chemical route. Mater Lett. 2008;62:886888. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15. Luo, Z, Li, H, Shu, H, Wang, K, Xia, J, Yan, Y. Synthesis of BaMoO4 nestlike nanostructures under a new growth mechanism. Cryst Growth Des. 2008;8:22752281. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16. Min, Y, Wang, T, Chen, Y. Microwave-assistant synthesis of ordered CuO micro-structures on Cu substrate. Appl Surf Sci. 2010;257:132137. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
1
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Apr 2024 18 0 0
May 2024 13 0 0
Jun 2024 19 1 1
Jul 2024 29 0 0
Aug 2024 36 0 0
Sep 2024 14 0 0
Oct 2024 0 0 0