Authors:
Simone Pereira da Silva Ribeiro Instituto de Química—DQO, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil

Search for other papers by Simone Pereira da Silva Ribeiro in
Current site
Google Scholar
PubMed
Close
,
Luciana Rocha de Moura Estevão Agência Nacional do Petróleo, Gás Natural e Biocombustíveis—ANP, SCM, Rio de Janeiro, Brazil

Search for other papers by Luciana Rocha de Moura Estevão in
Current site
Google Scholar
PubMed
Close
,
Csaba Novák Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Budapest, Hungary

Search for other papers by Csaba Novák in
Current site
Google Scholar
PubMed
Close
, and
Regina Sandra Veiga Nascimento Instituto de Química—DQO, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil

Search for other papers by Regina Sandra Veiga Nascimento in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In this study, poly (ethylene-co-butyl acrylate, EBA-30) samples containing an intumescent formulation of ammonium polyphosphate and pentaerythritol and clays of different basal spacings had their flame retardant properties evaluated by thermogravimetric analysis, differential thermal analysis, and heating microscopy. Samples without polymeric matrix were also analyzed to observe possible interactions between the clays and the intumescent formulation. Thermal Analyses revealed that the basal spacings of the clays strongly influence their synergistic effect with the intumescent formulation studied.

  • 1. Jimenez, M, Duquesne, S, Bourbigot, S. Characterization of the performance of an intumescent fire protective coating. Surf Coat Technol. 2006;201:979987. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2. Le Bras, M, Bourbigot, S. Fire retarded intumescent thermoplastic formulations, synergy and synergistic agents: a review Le Bras, M, Camino, G, eds. et al. Fire retardancy of polymers: the use of intumescence. London: The Royal Society of Chemistry; 1998 6475.

    • Search Google Scholar
    • Export Citation
  • 3. Demir, H, Arkis, E, Balköse, D, Ülkü, S. Synergistic effect of natural zeolites on flame retardant additives. Polym Degrad Stab. 2005;89:478483. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4. Bourbigot, S, Le Bras, M, Bréant, P, et al. Zeolites: new synergistic agents for intumescent fire retardant thermoplastic formulations: criteria for the choice of zeolite. Fire Mater. 1996;20:145154. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5. Estevão, LRM, Le Bras, M, Delobel, R, Nascimento, RSV. Spent refinery catalyst as a synergistic agent in intumescent formulations: influence of the catalyst’s particle size and constituents. Polym Degrad Stab. 2005;88:444455. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6. Ribeiro, SPS, Estevão, LRM, Nascimento, RSV. Brazilian clays as synergistic agents in an ethylenic polymer matrix containing an intumescent formulation. J Therm Anal Calorim. 2007;87:661665. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7. Ribeiro, SPS, Estevão, LRM, Pereira, C, Rodrigues, J, Nascimento, RSV. Influence of clays on the flame retardancy and high temperature viscoelastic properties of polymeric intumescent formulations. Polym Degrad Stab. 2008;94:421431. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8. Ribeiro SPS , Estevão LRM, Nascimento RSV. Effect of clays on the fire-retardant properties of a polyethylenic copolymer containing intumescent formulation. Sci Technol Adv Mater. 2008. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9. Wang J , Liu Y, Xufu C. Effect of a novel charring agent on the thermal degradation and flame retardancy of acrylonitrile-butadiene-styrene. J Therm Anal Calorim. 2011. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10. Gao, M, Wu, W, Yan, Y. Thermal degradation and flame retardancy of epoxy resins containing intumescent flame retardant. J Therm Anal Calorim. 2009;95:605608. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11. Chuanmei J , Chen X. Synergistic effects of zinc oxide with layered double hydroxides in EVA/LDH composites. J Therm Anal Calorim. 2009. .

  • 12. Estevão, LRM, Nascimento, RSV. The use of heating microscopy in the study of intumescence in waste catalyst containing polymer systems. Polym Degrad Stab. 2002;75:517533. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13. Marchal, A, Delobel, R, Le Bras, M, et al. Effect of intumescence on polymer degradation. Polym Degrad Stab. 1994;44:263272. .

  • 14. Boubirgot, S, Le Bras, M. Synergy in intumescence overview of: the use of zeolites Le Bras, M, Camino, G, eds. et al. Fire retardancy of polymers: the use of intumescence. London: The Royal Society of Chemistry; 1998 222235.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
1
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)