Authors:
S. M. Sidel Faculdade de Engenharia, UNESP—Univ Estadual Paulista, Ilha Solteira, SP, Brazil
UFT—Universidade Federal do Tocantins, Palmas, TO, Brazil

Search for other papers by S. M. Sidel in
Current site
Google Scholar
PubMed
Close
,
F. A. Santos Faculdade de Engenharia, UNESP—Univ Estadual Paulista, Ilha Solteira, SP, Brazil

Search for other papers by F. A. Santos in
Current site
Google Scholar
PubMed
Close
,
V. O. Gordo Faculdade de Engenharia, UNESP—Univ Estadual Paulista, Ilha Solteira, SP, Brazil

Search for other papers by V. O. Gordo in
Current site
Google Scholar
PubMed
Close
,
E. Idalgo Faculdade de Engenharia, UNESP—Univ Estadual Paulista, Ilha Solteira, SP, Brazil

Search for other papers by E. Idalgo in
Current site
Google Scholar
PubMed
Close
,
A. A. Monteiro Faculdade de Engenharia, UNESP—Univ Estadual Paulista, Ilha Solteira, SP, Brazil

Search for other papers by A. A. Monteiro in
Current site
Google Scholar
PubMed
Close
,
J. C. S. Moraes Faculdade de Engenharia, UNESP—Univ Estadual Paulista, Ilha Solteira, SP, Brazil

Search for other papers by J. C. S. Moraes in
Current site
Google Scholar
PubMed
Close
, and
K. Yukimitu Faculdade de Engenharia, UNESP—Univ Estadual Paulista, Ilha Solteira, SP, Brazil

Search for other papers by K. Yukimitu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Nucleation process and crystal growth for three samples of the (20-x)Li2O–80TeO2xWO3 glass system were studied using X-ray diffraction and differential scanning calorimetry techniques. X-ray diffraction data confirmed the amorphous characteristic of the as-quenched samples and indicated the growth of crystalline phases formed due to the thermal treatment for annealed samples. These results reveal the presence of three distinct γ-TeO2, α-TeO2 and α-Li2Te2O5 crystalline phases in the TL sample, and two distinct α-TeO2 and γ-TeO2 crystalline phases in the TLW5 and TLW10 samples. The activation energy and the Avrami exponent were determined from DSC measurements. The activation energy values X-ray diffraction data of the TLW10 glass sample suggest that γ-TeO2 phase occur before the α-TeO2. The results obtained for the Avrami exponent point to that the nucleation process is volumetric and that the crystal growth is two or three-dimensional.

  • 1. Shelby, JE. Introduction to glass science and technology. Cambridge: The Royal Society of Chemistry; 1997.

  • 2. Tanaka, K. Optical nonlinearity in photonic glasses. J Mater Sci Mater Electron. 2005;16:633643. .

  • 3. Yakhkind, AK. Tellurite glasses. J Am Ceram Soc. 1966;49:670678. .

  • 4. Nasu, H, Matsushita, O, Kamiya, K, Kobayashi, H, Kubodera, K. Third harmonic-generation from Li2O–TiO2–TeO2 glasses. J Non-Cryst Solids. 1990;124:275277. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5. El-Mallawany, RAF. Tellurite glasses. Part 1: elastic properties. Mater Chem Phys. 1998;53:93120. .

  • 6. El-Mallawany, RAF. Tellurite glasses. Part 2: anelastic, phase separation, Debye temperature and thermal properties. Mater Chem Phys. 1999;60:103131. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7. Kuo, MC, Huang, JC, Chen, M. Non-isothermal crystallization kinetic behavior of alumina nanoparticle filled poly (ether-ether ketone). Mater Chem Phys. 2006;99:258268. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8. Shaaban, ER. Non-isothermal crystallization kinetic studies on a ternary, Sb0.14As0.38Se0.48chalcogenide semi-conducting glass. Phys B. 2006;373:211216. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9. Gao, YQ, Wang, W. On the activation energy of crystallization in metallic glasses. J Non-Cryst Solids. 1986;81:129134. .

  • 10. Henderson, DW. Thermal analysis of non-crystallization kinetics in glass forming liquids. J Non-Cryst Solids. 1979;30:301315. .

  • 11. Thomas, PA. The crystal structure and absolute optical chirality of paratellurite, α-TeO2. J Phys C. 1988;21:46114627. .

  • 12. El-Mallawany, RAF. Tellurite glasses handbook: physical properties and data. Boca Raton: CRC Press; 2002.

  • 13. Champarnaud-Mesjard, JC, Banchandin, S, Thomas, P, Mirgorodsky, AP, Merle-Mérjean, T, Frit, B. Crystal structure, Raman spectrum and lattice dynamics of a new metastable form of tellurium dioxide: γ-TeO2. J Phys Chem Solids. 2000;61:14991507. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14. Mirgorodsky, AP, Merle-Mérjean, T, Champarnaud-Mesjard, JC, Thomas, P, Frit, B. Dynamics and structure of TeO2 polymorphs: model treatment of paratellurite and tellurite; Raman scattering evidence for new γ- and δ-phases. J Phys Chem Solids. 2000;61:501509. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15. Johnson, WA, Mehl, RF. Reaction kinetics in processes of nucleation and growth. Trans Am Inst Min Metal Eng. 1939;135:416442.

  • 16. Avrami, M. Kinetics of phase change. I General theory. J Chem Phys. 1939;7:11031112. .

  • 17. Avrami, M. Kinetics of phase change. II Transformation–time relations for random distribution of nuclei. J Chem Phys. 1940;8:212224. .

  • 18. Fokin, VM, Zanotto, ED, Yuritsyn, NS, Schmelzer, JWP. Homogeneous crystal nucleation in silicate glasses: a 40years perspective. J Non-Cryst Solids. 2006;352:26812714. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19. Ma, L, Li, L, Guo, C. Influence of m-isopropenyl-a, a-dimethylbenzyl isocyanate and styrene on non-isothermal crystallization behavior of polypropylene. J Therm Anal Calorim. 2010;101:11011109. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20. Kozmidis-Petrovic, AF, Strbac, GR, Strbac, DD. Kinetics of non-isothermal crystallization of chalcogenide glasses from the Sb32As5S48I15 system. J Non-Cryst Solids. 2007;353:20142019. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21. Majhi, K, Varma, KBR. Crystallization kinetics of SrBi2B2O7 glasses by non-isothermal methods. J Therm Anal Calorim. 2009;98:731736. .

  • 22. Araújo, EB, Idalgo, E. Non-isothermal studies on crystallization kinetics of tellurite 20Li2O–80TeO2 glass. J Therm Anal Calorim. 2009;95:3742. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23. Kissinger, HE. Variation of peak temperature with heating rate in differential thermal nalysis. J Res Natl Burreau Stand. 1956;57:217221.

    • Search Google Scholar
    • Export Citation
  • 24. Kissinger, HE. Reaction kinetics in differential thermal analysis. J Res Natl Bureau Stand. 1957;29:17021706.

  • 25. Matusita, K, Sakka, S. Kinetics study of the crystallization of glass by differential scanning calorimetry. Phys Chem Glasses. 1979;20:8184.

    • Search Google Scholar
    • Export Citation
  • 26. Matusita, K, Komatsu, T, Yokota, R. Kinetics of non-isothermal crystallization process and activation-energy for crystal-growth in amorphous materials. J Mater Sci. 1984;19:291296. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27. Long, Y, Shanks, RA, Stachurski, ZH. Kinetics of polymer crystallization. Prog Polym Sci. 1995;20:651701. .

  • 28. Ziani, N, Belhadji, M, Heireche, L, Bouchaour, Z, Belbachir, M. Crystallization kinetics of Ge20Te80 chalcogenide glasses doped with Sb. Phys B. 2005;358:132137. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29. Ozawa, T. A new method of analyzing thermogravimetric data. Bull Chem Soc Japan. 1965;38:18811886. .

  • 30. Augis, JA, Bennett, JE. Calculation of the Avrami, parameters for heterogeneous solid state reactions using modification of the Kissinger method. J Therm Anal. 1978;13:283292. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31. Vázquez, J, Gonzalez-Palma, R, Villares, P, Jimenez-Garay, R. Theoretical study on the glass-crystal transformation and deduction of its kinetic parameters by DSC, using non-isothermal regime. Phys B. 2003;336:297307. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32. Ray, CS, Fang, X, Day, DE. New method for determining the nucleation and crystal growth rates in glasses. J Am Ceram Soc. 2000;83:865872. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33. Noguera, O, Merle-Mérjean, T, Mirgorodsky, AP, Smirnov, MB, Thomas, P, Champarnaud-Mersjard, JC. Vibrational and structural properties of glass and crystalline phases of TeO2. J Non-Cryst Solids. 2003;330:5060. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34. Blanchandin, S, Marchet, P, Thomas, P, Champarnaud-Mesjard, JC, Frit, B, Chagraoui, A. New investigations within the TeO2–WO3 system: phase equilibrium diagram and glass crystallization. J Mater Sci. 1999;34:42854292. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35. Zhang, JJ, Dai, SX, Wang, GN, Sum, HT, Zhang, LY, Hu, LL. Fabrication and emission properties of Er3+/Yb3+ codoped tellurite glass fiber for boradband optical amplification. J Lumin. 2005;115:4552. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36. Pratap, A, Lad, KN, Shanker Rao, TL, Majmudar, P, Saxena, NS. Kinetics of crystallization of amorphous Cu50Ti50 alloy. J Non-Cryst Solids. 2004;345:178181. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37. Idalgo, E, Araújo, EB, Yukimitu, K, Moraes, JCS, Reynoso, VCS, Carvalho, CL. Effects of the particle size and nucleation temperature on tellurite 20Li2O–80TeO2 glass crystallization. Mater Sci Eng A. 2006;434:1318. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
1
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)