View More View Less
  • 1 Department of Organic Processes, School of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21949900, Brazil
  • 2 Petrobras R&D Center—CENPES, Rio de Janeiro 20035900, Brazil
Restricted access

Abstract

Each year, 100 millions tons of asphalt are manufactured worldwide and 88% of them are designated to act as binder in mineral aggregate producing asphalt mixtures in the paving industry. The present study investigates the kinetics parameters of thermal degradation through thermal analysis behavior of three different asphalt binders’ samples: an asphalt cement C and two asphalt binders modified by polymers: copolymer styrene–butadiene–styrene S and polyphosphoric acid L. By Thermokinetics software a model-free kinetic analysis could be made using two models: Friedman and Ozawa–Flynn–Wall. Kinetic parameters following both models, through Thermogravimetric curves, showed that for the first step, the binder L presented the highest activation energy followed by binder S. Between all simulations, the FnF1 model was the one which best correspond to the experimental data for all samples.

  • 1. European Committee for Standardization—ECS (2000) Bitumen and bituminous binders terminology-En 12597, European Committee for standardization, Bruxelas.

    • Search Google Scholar
    • Export Citation
  • 2. Leite, LFM. Estudo de preparo e caracterização de asfaltos modificados por polímeros. Tese (Doutorado em Ciências)—Instituto de Macromoléculas. Rio de Janeiro: Universidade Federal do Rio de Janeiro; 1999.

    • Search Google Scholar
    • Export Citation
  • 3. Mothé, MG, Leite, LFM, Mothé, CG. Thermal characterization of asphalt mixtures by TG/DTG, DTA and FTIR. J Therm Anal Calorim. 2008;93:105109. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4. Yildirim, Y. Polymer modified asphalt binders. Construct Build Mater. 2007;21:6672. .

  • 5. Mothé, MG. Estudo de comportamento de ligantes asfálticos por reologia e análise térmica. Dissertação (Mestrado em Ciências)—Escola de Química. Rio de Janeiro: Universidade Federal do Rio de Janeiro; 2009.

    • Search Google Scholar
    • Export Citation
  • 6. Kok, MV, Kaaracan, O. Pyrolysis analysis and kinetics of crude oils. J Therm Anal Calorim. 1998;52:781788. .

  • 7. Dalinger I , Shevelev S, Korolev V, et al. (2010) Chemistry and thermal decomposition of trinitropyrazoles. J Therm Anal Calorim. .

  • 8. Araújo, CR, Mothé, CG. Uso de programa computacional aliado às técnicas de análise térmica para determinação de parâmetros cinéticos de compósitos de PU/Fibra de Curauá. Revista Analytica. 2003;4:3743.

    • Search Google Scholar
    • Export Citation
  • 9. Rodriguez, RP, Sierens, R, Verhelst, S. Thermal and kinetic evaluation of biodiesel derived from soybean oil and higuereta oil. J Therm Anal Calorim. 2009;96:897901. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10. Mothé, CG, Azavedo, AD. Análise Térmica de Materiais. São Paulo SP: Artliber Editora; 2009 324.

  • 11. Opfermann, JR, Kaisersberger, E, Flammersheim, HJ. Model-free analysis of thermoanalytical data-advantages and limitations. Thermochim Acta. 2002;391:119127. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12. Ozawa, T. Thermal analysis—review and prospect. Thermochim Acta. 2000;355:3542. .

  • 13. Ozawa, T. Kinetic analysis by repeated temperature scanning. Part 1. Theory and methods. Thermochim Acta. 2000;356:173180. .

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Nov 2020 0 2 1
Dec 2020 0 0 0
Jan 2021 1 0 0
Feb 2021 1 0 0
Mar 2021 2 0 0
Apr 2021 0 0 0
May 2021 0 0 0