Each year, 100 millions tons of asphalt are manufactured worldwide and 88% of them are designated to act as binder in mineral aggregate producing asphalt mixtures in the paving industry. The present study investigates the kinetics parameters of thermal degradation through thermal analysis behavior of three different asphalt binders’ samples: an asphalt cement C and two asphalt binders modified by polymers: copolymer styrene–butadiene–styrene S and polyphosphoric acid L. By Thermokinetics software a model-free kinetic analysis could be made using two models: Friedman and Ozawa–Flynn–Wall. Kinetic parameters following both models, through Thermogravimetric curves, showed that for the first step, the binder L presented the highest activation energy followed by binder S. Between all simulations, the FnF1 model was the one which best correspond to the experimental data for all samples.
1. European Committee for Standardization—ECS (2000) Bitumen and bituminous binders terminology-En 12597, European Committee for standardization, Bruxelas.
2. Leite, LFM. Estudo de preparo e caracterização de asfaltos modificados por polímeros. Tese (Doutorado em Ciências)—Instituto de Macromoléculas. Rio de Janeiro: Universidade Federal do Rio de Janeiro; 1999.
3. Mothé, MG, Leite, LFM, Mothé, CG. Thermal characterization of asphalt mixtures by TG/DTG, DTA and FTIR. J Therm Anal Calorim. 2008;93:105–109. .
4. Yildirim, Y. Polymer modified asphalt binders. Construct Build Mater. 2007;21:66–72. .
5. Mothé, MG. Estudo de comportamento de ligantes asfálticos por reologia e análise térmica. Dissertação (Mestrado em Ciências)—Escola de Química. Rio de Janeiro: Universidade Federal do Rio de Janeiro; 2009.
6. Kok, MV, Kaaracan, O. Pyrolysis analysis and kinetics of crude oils. J Therm Anal Calorim. 1998;52:781–788. .
7. Dalinger I , Shevelev S, Korolev V, et al. (2010) Chemistry and thermal decomposition of trinitropyrazoles. J Therm Anal Calorim. .
8. Araújo, CR, Mothé, CG. Uso de programa computacional aliado às técnicas de análise térmica para determinação de parâmetros cinéticos de compósitos de PU/Fibra de Curauá. Revista Analytica. 2003;4:37–43.
9. Rodriguez, RP, Sierens, R, Verhelst, S. Thermal and kinetic evaluation of biodiesel derived from soybean oil and higuereta oil. J Therm Anal Calorim. 2009;96:897–901. .
10. Mothé, CG, Azavedo, AD. Análise Térmica de Materiais. São Paulo SP: Artliber Editora; 2009 324.
11. Opfermann, JR, Kaisersberger, E, Flammersheim, HJ. Model-free analysis of thermoanalytical data-advantages and limitations. Thermochim Acta. 2002;391:119–127. .
12. Ozawa, T. Thermal analysis—review and prospect. Thermochim Acta. 2000;355:35–42. .
13. Ozawa, T. Kinetic analysis by repeated temperature scanning. Part 1. Theory and methods. Thermochim Acta. 2000;356:173–180. .