View More View Less
  • 1 LaMF—UNESP Instituto de Química, Araraquara, Brazil
  • | 2 FACIP Curso de Química—UFU Ituiutaba, Ituiutaba, Brazil
  • | 3 Instituto de Química—Universidade Federal de Uberlândia/UFU Uberlândia, Uberlândia, Brazil
  • | 4 Instituto Federal do Triângulo Mineiro—IFTM, campus Paracatu, Paracatu, Brazil
Restricted access

Abstract

In this study, microcrystalline cellulose (MCC) was prepared from the acid hydrolysis of bacterial cellulose (BC) produced in culture medium of static Acetobacter xylinum. The MCC-BC produced an average particle size between 70 and 90 μm and a degree of polymerization (DP) of 250. The characterization of samples was performed by thermogravimetric analysis, X-ray diffraction, and scanning electron microscopy (SEM). The MCC shows a lower thermal stability than the pristine cellulose, which was expected due to the decrease in the DP during the hydrolysis process. In addition, from X-ray diffractograms, we observed a change in the crystalline structure. The images of SEM for the BC and MCC show clear differences with modifications of BC fiber structure and production of particles with characteristics similar to commercial MCC.

  • 1. Klemm, D, Heublein, B, Fink, HP, Bohn, A. Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed. 2005;44:3358 .

  • 2. Barud, HS, Ribeiro, CA, Crespi, MS, Martines, MAU, Dexpert, GHYS, Marques, J, Rodrigo, FC, Messaddeq, Y, Ribeiro, SJL. Thermal characterization of bacterial cellulose—phosphate membranes. J Therm Anal Calorim. 2007;87:815818. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3. Sjöström, E. Wood chemistry—fundamental and applications. San Diego: Academic Press; 1981 5255.

  • 4. Iguchi, M, Yamanaka, S, Budhiono, A. Bacterial cellulose—a masterpiece of nature’s arts. J Mater Sci. 2000;35: 2 261270. .

  • 5. Jonas, R, Farah, LF. Production and application of microbial cellulose. Polym Degrad Stab. 1998;59:101 .

  • 6. Bielecki, S, Krystynowicz, A, Turkiewicz, M, Kalinowska, H. Bacterial cellulose Steinbuchel, A, eds. Biotechnology of biopolymers, from synthesis to patents. 14 Heidelberg: Wiley; 2005 381.

    • Search Google Scholar
    • Export Citation
  • 7. El-Sakhawy, M, Hassan, ML. Physical and mechanical properties of microcrystalline cellulose prepared from agricultural residues. Carbohydr Polym. 2007;67:110. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8. NBR 7730. Pulp—determination of viscosity in cupriethylenediamine solution (CUEN) using capillary viscometer. 1998.

  • 9. Bolhuis, GH, Chawhan, ZT. Materials for direct compaction Alderbon, G, Nyström, C, eds. Pharmaceutical powder compaction technology. New York: Marcel Dekker; 1996 419501.

    • Search Google Scholar
    • Export Citation
  • 10. Paralikar, KM, Aravindanath, S. Crystallization of cellulose. J Appl Polym Sci. 1988;35: 8 20852089. .

  • 11. Muñoz-Ruiz, A, Antequera, VV, Parales, CM, Ballesteros, RJC. Tabletting properties of new granular microcrystalline celluloses. Eur J Pharm Biopharm. 1994;40: 1 3640.

    • Search Google Scholar
    • Export Citation
  • 12. Filho, ECS, Santana, SAA, Melo, JCP, Oliveira, FJVE, Airoldi, C. X-ray diffraction and thermogravimetry data of cellulose, chlorodeoxycellulose and aminodeoxycellulose. J Therm Anal Calorim. 2009;100:315321. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13. Nelson, ML, O’Connor, RT. Relation of certain Infrared bands to cellulose crystallinity and crystal lattice type. Part II. A new infrared ratio for estimation of crystallinity in cellulose I and II. J Appl Polym Sci. 1964;8:13251341. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14. Ott, E. High polymers e cellulose and cellulose derivatives. New York: Interscience Publishers Inc.; 1943.

  • 15. Nitin A , Tayade T. Evaluation of microcrystalline cellulose prepared from sisal fibers as a table excipient: a technical note. AAPS PharmSciTech. 2007;8(1): Article 8.

    • Search Google Scholar
    • Export Citation
  • 16. Barud HS , Ribeiro CA, Capela JMV, Crespi MS, Ribeiro SJL, Messadeq Y. Kinetic parameters for thermal decomposition of microcrystalline, vegetal, and bacterial cellulose. J Therm Anal Calorim. 2010. ESTAC2010 Special Issue: 1–6.

    • Search Google Scholar
    • Export Citation
  • 17. Cabrales, L, Abidi, N. On the thermal degradation of cellulose in cotton fibers. J Therm Anal Calorim. 2010;102:485491. .

  • 18. Zohuriaan, MJ, Shokrolahi, F. Thermal studies on natural and modified gums. Polym Testing. 2004;23:575579. .

  • 19. Uesu, NY, Pineda, AG, Hechenleitner, AAW. Microcrystalline cellulose from soybean husk: effects of solvent treatments on its properties as acetylsalicylic acid carrier. Int J Pharm. 2000;206:8596. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20. Roman, M, Winter, WT. Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromolecules. 2004;5:16711677. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21. Rodrigues Filho, G, Assunção, RMN, Vieira, JG, Meireles, CS, Cerqueira, DA, Barud, HS, Ribeiro, SJL, Messaddeq, Y. Characterization of methylcellulose produced form sugar cane bagasse cellulose: crystallinity and thermal properties. Polym Degrad Stab. 2007;92:205210. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22. Dong, XM, Revol, Jf, Gray, DG. Effect of Microcrystalline preparation condition on the formation of colloid crystal of cellulose. Cellulose. 1998;5:1932. .

    • Crossref
    • Search Google Scholar
    • Export Citation

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jan 2021 7 0 0
Feb 2021 11 2 0
Mar 2021 1 1 0
Apr 2021 8 0 0
May 2021 12 1 1
Jun 2021 3 0 0
Jul 2021 0 0 0