View More View Less
  • 1 LaMF—UNESP Instituto de Química, Araraquara, Brazil
  • | 2 FACIP Curso de Química—UFU Ituiutaba, Ituiutaba, Brazil
  • | 3 Instituto de Química—Universidade Federal de Uberlândia/UFU Uberlândia, Uberlândia, Brazil
  • | 4 Instituto Federal do Triângulo Mineiro—IFTM, campus Paracatu, Paracatu, Brazil
Restricted access

Abstract

In this study, microcrystalline cellulose (MCC) was prepared from the acid hydrolysis of bacterial cellulose (BC) produced in culture medium of static Acetobacter xylinum. The MCC-BC produced an average particle size between 70 and 90 μm and a degree of polymerization (DP) of 250. The characterization of samples was performed by thermogravimetric analysis, X-ray diffraction, and scanning electron microscopy (SEM). The MCC shows a lower thermal stability than the pristine cellulose, which was expected due to the decrease in the DP during the hydrolysis process. In addition, from X-ray diffractograms, we observed a change in the crystalline structure. The images of SEM for the BC and MCC show clear differences with modifications of BC fiber structure and production of particles with characteristics similar to commercial MCC.

  • 1. Klemm, D, Heublein, B, Fink, HP, Bohn, A. Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed. 2005;44:3358 .

  • 2. Barud, HS, Ribeiro, CA, Crespi, MS, Martines, MAU, Dexpert, GHYS, Marques, J, Rodrigo, FC, Messaddeq, Y, Ribeiro, SJL. Thermal characterization of bacterial cellulose—phosphate membranes. J Therm Anal Calorim. 2007;87:815818. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3. Sjöström, E. Wood chemistry—fundamental and applications. San Diego: Academic Press; 1981 5255.

  • 4. Iguchi, M, Yamanaka, S, Budhiono, A. Bacterial cellulose—a masterpiece of nature’s arts. J Mater Sci. 2000;35: 2 261270. .

  • 5. Jonas, R, Farah, LF. Production and application of microbial cellulose. Polym Degrad Stab. 1998;59:101 .

  • 6. Bielecki, S, Krystynowicz, A, Turkiewicz, M, Kalinowska, H. Bacterial cellulose Steinbuchel, A, eds. Biotechnology of biopolymers, from synthesis to patents. 14 Heidelberg: Wiley; 2005 381.

    • Search Google Scholar
    • Export Citation
  • 7. El-Sakhawy, M, Hassan, ML. Physical and mechanical properties of microcrystalline cellulose prepared from agricultural residues. Carbohydr Polym. 2007;67:110. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8. NBR 7730. Pulp—determination of viscosity in cupriethylenediamine solution (CUEN) using capillary viscometer. 1998.

  • 9. Bolhuis, GH, Chawhan, ZT. Materials for direct compaction Alderbon, G, Nyström, C, eds. Pharmaceutical powder compaction technology. New York: Marcel Dekker; 1996 419501.

    • Search Google Scholar
    • Export Citation
  • 10. Paralikar, KM, Aravindanath, S. Crystallization of cellulose. J Appl Polym Sci. 1988;35: 8 20852089. .

  • 11. Muñoz-Ruiz, A, Antequera, VV, Parales, CM, Ballesteros, RJC. Tabletting properties of new granular microcrystalline celluloses. Eur J Pharm Biopharm. 1994;40: 1 3640.

    • Search Google Scholar
    • Export Citation
  • 12. Filho, ECS, Santana, SAA, Melo, JCP, Oliveira, FJVE, Airoldi, C. X-ray diffraction and thermogravimetry data of cellulose, chlorodeoxycellulose and aminodeoxycellulose. J Therm Anal Calorim. 2009;100:315321. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13. Nelson, ML, O’Connor, RT. Relation of certain Infrared bands to cellulose crystallinity and crystal lattice type. Part II. A new infrared ratio for estimation of crystallinity in cellulose I and II. J Appl Polym Sci. 1964;8:13251341. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14. Ott, E. High polymers e cellulose and cellulose derivatives. New York: Interscience Publishers Inc.; 1943.

  • 15. Nitin A , Tayade T. Evaluation of microcrystalline cellulose prepared from sisal fibers as a table excipient: a technical note. AAPS PharmSciTech. 2007;8(1): Article 8.

    • Search Google Scholar
    • Export Citation
  • 16. Barud HS , Ribeiro CA, Capela JMV, Crespi MS, Ribeiro SJL, Messadeq Y. Kinetic parameters for thermal decomposition of microcrystalline, vegetal, and bacterial cellulose. J Therm Anal Calorim. 2010. ESTAC2010 Special Issue: 1–6.

    • Search Google Scholar
    • Export Citation
  • 17. Cabrales, L, Abidi, N. On the thermal degradation of cellulose in cotton fibers. J Therm Anal Calorim. 2010;102:485491. .

  • 18. Zohuriaan, MJ, Shokrolahi, F. Thermal studies on natural and modified gums. Polym Testing. 2004;23:575579. .

  • 19. Uesu, NY, Pineda, AG, Hechenleitner, AAW. Microcrystalline cellulose from soybean husk: effects of solvent treatments on its properties as acetylsalicylic acid carrier. Int J Pharm. 2000;206:8596. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20. Roman, M, Winter, WT. Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromolecules. 2004;5:16711677. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21. Rodrigues Filho, G, Assunção, RMN, Vieira, JG, Meireles, CS, Cerqueira, DA, Barud, HS, Ribeiro, SJL, Messaddeq, Y. Characterization of methylcellulose produced form sugar cane bagasse cellulose: crystallinity and thermal properties. Polym Degrad Stab. 2007;92:205210. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22. Dong, XM, Revol, Jf, Gray, DG. Effect of Microcrystalline preparation condition on the formation of colloid crystal of cellulose. Cellulose. 1998;5:1932. .

    • Crossref
    • Search Google Scholar
    • Export Citation

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2021 11 0 0
Jul 2021 6 0 0
Aug 2021 7 0 0
Sep 2021 8 0 0
Oct 2021 2 0 0
Nov 2021 9 0 0
Dec 2021 1 0 0