This paper reports the thermal characterization of polyacrylamide-co-methylcellulose hydrogels and the constituent monomers (acrylamide and methylcellulose). Polymeric materials can be used to produce hydrogels, which can be natural, synthetic, or a mixture. The hydrogels described here were obtained by free radical polymerization, in the presence of N,N′-methylene-bis-acrylamide as a cross-linker agent. Four acrylamide concentrations were used for the synthesis of hydrogels: 3.6, 7.2, 14.7, and 21.7% (w/v). The materials so obtained were analyzed by TG, DTG, DSC, and FT-IR. The TG curves of acrylamide and methylcellulose showed three mass loss events. In DSC curves, the acrylamide exhibited one melting peak at 84.5 °C, and methylcellulose indicated one exothermic event. Nevertheless, acrylamide was considered more stable than methylcellulose. The TG curves of the hydrogels exhibited three mass loss events, and on the DSC curves, three endothermic events were observed. It was verified that the different acrylamide proportions influenced the thermic behavior of hydrogels, and that the authors considered the 7.2% hydrogel a promising drug carrier system. The absorption bands were well defined, confirming the presence of the functional groups in the samples.
1. Aouada, FA. Síntese e caracterização de hidrogéis de poliacrilamida e metilcelulose para liberação controlada de pesticidas. São Carlos, Brasil: Universidade Federal de São Carlos; 2009.
2. Aouada, FA, Menezes, EA, Nogueira, ARA, Mattoso, LHC. Síntese de hidrogéis e cinética de liberação de amônio e potássio. R Bras Ci Solo. 2008;32: 4 7 .
3. Aouada, FA, Chiou, B, Orts, WJ, Mattoso, LHC. Physicochemical and morphological properties of poly(acrylamide) and methylcellulose hydrogels: effects of monomer, crosslinker and polysaccharide compositions. Polym Eng Sci. 2009;49: 12 2467–2474. .
4. Kulkarni, RV, Sa, B. Electroresponsive polyacrylamide-grafted-xanthan hydrogels for drug delivery. J Bioact Compat Polym. 2009;24: 4 368–384. .
5. Sutar, P, Mishra, R, Pal, K, Banthia, A. Development of pH sensitive polyacrylamide grafted pectin hydrogel for controlled drug delivery system. J Mater Sci: Mater Med. 2008;19: 6 2247–2253. .
6. Nakamura, K, Murray, RJ, Joseph, JI, Peppas, NA, Morishita, M, Lowman, AM. Oral insulin delivery using P(MAA-g-EG) hydrogels: effects of network morphology on insulin delivery characteristics. J Control Release. 2004;95: 3 589–599. .
7. Silva, FP. Síntese e caracterização de hidrogéis de poli[(N-isopropilacrilamida)-co-(ácido acrílico)] e sua aplicação como sistemas de liberação de medicamentos. Belo Horinzonte, Brasil: Universidade Federal de Minas Gerais; 2006.
8. Griffith, LG. Polymeric biomaterials. Acta Mater. 2000;48:263–277. .
9. Aouada, FA, de Moura, MR, Rubira, AF, Muniz, EC, Fernandes, PRG, Mukai, H, et al. Birefringent hydrogels based on PAAm and lyotropic liquid crystal: optical, morphological and hydrophilic characterization. Eur Polym J. 2006;42: 10 2781–2790. .
10. Lopes, CM, Lobo, JMS, Costa, P. Formas farmacêuticas de liberação modificada: polímeros hidrifílicos. Braz J Pharm Sci. 2005;41:143–154.
11. He, H, Guan, J, Lee, JL. An oral delivery device based on self-folding hydrogels. J Control Release. 2006;110: 2 339–346. .
12. Jain, RA. The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices. Biomaterials. 2000;21: 23 2475–2490. .
13. Peppas, NA, Huang, Y, Torres-Lugo, M, Ward, JH, Zhang, J. Physicochemical foundations and structural design of hydrogels in medicine and biology. Annu Rev Biomed Eng. 2000;2: 1 9–29. .
14. Brazel, CS, Peppas, NA. Synthesis and characterization of thermo- and chemomechanically responsive poly(N-isopropylacrylamide-co-methacrylic acid) hydrogels. Macromolecules. 1995;28: 24 8016–8020. .
15. Matos, JR, Machado, LDB. Análise térmica—termogravimetria Canevarolo Junior, SV, eds. Técnicas de caracterização de polímeros. São Paulo: Artliber; 2004 209–228.
16. Gabbott, P. Principles and applications of thermal analysis. 1 Oxford: Blackwell Publishing; 2008 .
17. Neto, H, Novák, C, Matos, J. Thermal analysis and compatibility studies of prednicarbate with excipients used in semi solid pharmaceutical form. J Therm Anal Calorim. 2009;97: 1 367–374. .
18. Bernardi, L, Oliveira, P, Murakami, F, Silva, M, Borgmann, S, Cardoso, S. Characterization of venlafaxine hydrochloride and compatibility studies with pharmaceutical excipients. J Therm Anal Calorim. 2009;97: 2 729–733. .
19. Oliveira, P, Bernardi, L, Murakami, F, Mendes, C, Silva, M. Thermal characterization and compatibility studies of norfloxacin for development of extended release tablets. J Therm Anal Calorim. 2009;97: 2 741–745. .
20. Bruni, G, Berbenni, V, Milanese, C, Girella, A, Marini, A. Drug-excipient compatibility studies in binary and ternary mixtures by physico-chemical techniques. J Therm Anal Calorim. 2010;102: 1 193–201. .
21. Aouada, FA, Muniz, EC, Vaz, CMP, Mattoso, LHC. Correlação entre parâmetros da cinética de intumescimento com características estruturais e hidrofílicas de hidrogéis de poliacrilamida e metilcelulose. Quím Nova. 2009;32:1482–1490. .
22. Vimala, K, Samba Sivudu, K, Murali Mohan, Y, Sreedhar, B, Mohana Raju, K. Controlled silver nanoparticles synthesis in semi-hydrogel networks of poly(acrylamide) and carbohydrates: a rational methodology for antibacterial application. Carbohydr Polym. 2009;75: 3 463–471. .
23. Mandal, BB, Kapoor, S, Kundu, SC. Silk fibroin/polyacrylamide semi-interpenetrating network hydrogels for controlled drug release. Biomaterials. 2009;30: 14 2826–2836. .
24. Neto, CGT, Giacometti, JA, Job, AE, Ferreira, FC, Fonseca, JLC, Pereira, MR. Thermal analysis of chitosan based networks. Carbohydr Polym. 2005;62: 2 97–103. .
25. Bouwstra, JA, Salomons-de Vries, MA, van Miltenburg, JC. The thermal behaviour of water in hydrogels. Thermochim Acta. 1995;248:319–327. .
26. Khalid, MN, Agnely, F, Yagoubi, N, Grossiord, JL, Couarraze, G. Water state characterization, swelling behavior, thermal and mechanical properties of chitosan based networks. Eur J Pharm Sci. 2002;15: 5 425–432. .
27. Sun, J, Lu, J, Zhu, X, Zhang, K, Lu, Z, Zhu, J. Preparation and thermal decomposition of polyacrylamide and its derivatives by plasma initiated polymerization. J Therm Anal Calorim. 1999;58:301–307. .
28. Xia, Y-q, Guo, T-y, Song, M-d, Zhang, B-h, Zhang, B-l. Hemoglobin recognition by imprinting in semi-interpenetrating polymer network hydrogel based on polyacrylamide and chitosan. Biomacromolecules. 2005;6: 5 2601–2606. .
29. Özeroglu, C, Sezgin, S. Polymerization of acrylamide initiated with Ce(IV)- and KMnO4-mercaptosuccinic acid redox systems in acid-aqueous medium. Express Polym Lett. 2007;1:132–141. .
30. Oh, SY, Yoo, DI, Shin, Y, Seo, G. FTIR analysis of cellulose treated with sodium hydroxide and carbon dioxide. Carbohydr Res. 2005;340: 3 417–428. .
31. Valente, AJM, Sobral, AJFN, Jiménez, A, Patachia, S, Oliveira, ARCB, Lobo, VMM. Effect of different electrolytes on the swelling properties of calyx[4]pyrrole-containing polyacrylamide membranes. Eur Polym J. 2006;42: 9 2059–2068. .
32. Koschella A , Heinze T, Klemm D. First synthesis of 3-O-functionalized cellulose ethers via 2,6-di-O-protected silyl cellulose. Macromol Biosci. 2001;1(1):49–54. .
33. Liu, W, Zhang, B, Lu, WW, Li, X, Zhu, D, De Yao, K, et al. A rapid temperature-responsive sol-gel reversible poly(N-isopropylacrylamide)-g-methylcellulose copolymer hydrogel. Biomaterials. 2004;25: 15 3005–3012. .
34. Sowwan, M, Faroun, M, Musa, I, Ibrahim, I, Makharza, S, Sultan, W, et al. Study on the morphology of polyacrylamide–silica fumed nanocomposite thin films. Int J Phys Sci. 2008;3: 6 144–147.
35. Çaykara, T, Bulut, M, Demirci, S. Preparation of macroporous poly(acrylamide) hydrogels by radiation induced polymerization technique. Nucl Instrum Methods Phys Res Sect B. 2007;265: 1 366–369. .
36. Yu, H, Xu, Z, Lei, H, Hu, M, Yang, Q. Photoinduced graft polymerization of acrylamide on polypropylene microporous membranes for the improvement of antifouling characteristics in a submerged membrane-reactor. Sep Purif Technol. 2007;53: 1 119–125. .