View More View Less
  • 1 Federal University of Pará, Augusto Corrêa Street, 01-Guamá, Belém, PA, 66075-110, Brazil
  • | 2 Embrapa Eastern Amazon, Laboratory of Agrobusiness, Belém, PA, 660095-100, Brazil
  • | 3 Chemistry Institute, São Paulo State University, Araraquara, SP, 14801-907, Brazil
  • | 4 Faculty of Chemical Engineering, Federal University of Pará, Belém, PA, 66075-110, Brazil
  • | 5 Federal University of Pará, Belém, PA, 66075-110, Brazil
Restricted access

Abstract

This paper reports the thermal characterization of polyacrylamide-co-methylcellulose hydrogels and the constituent monomers (acrylamide and methylcellulose). Polymeric materials can be used to produce hydrogels, which can be natural, synthetic, or a mixture. The hydrogels described here were obtained by free radical polymerization, in the presence of N,N′-methylene-bis-acrylamide as a cross-linker agent. Four acrylamide concentrations were used for the synthesis of hydrogels: 3.6, 7.2, 14.7, and 21.7% (w/v). The materials so obtained were analyzed by TG, DTG, DSC, and FT-IR. The TG curves of acrylamide and methylcellulose showed three mass loss events. In DSC curves, the acrylamide exhibited one melting peak at 84.5 °C, and methylcellulose indicated one exothermic event. Nevertheless, acrylamide was considered more stable than methylcellulose. The TG curves of the hydrogels exhibited three mass loss events, and on the DSC curves, three endothermic events were observed. It was verified that the different acrylamide proportions influenced the thermic behavior of hydrogels, and that the authors considered the 7.2% hydrogel a promising drug carrier system. The absorption bands were well defined, confirming the presence of the functional groups in the samples.

  • 1. Aouada, FA. Síntese e caracterização de hidrogéis de poliacrilamida e metilcelulose para liberação controlada de pesticidas. São Carlos, Brasil: Universidade Federal de São Carlos; 2009.

    • Search Google Scholar
    • Export Citation
  • 2. Aouada, FA, Menezes, EA, Nogueira, ARA, Mattoso, LHC. Síntese de hidrogéis e cinética de liberação de amônio e potássio. R Bras Ci Solo. 2008;32: 4 7 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3. Aouada, FA, Chiou, B, Orts, WJ, Mattoso, LHC. Physicochemical and morphological properties of poly(acrylamide) and methylcellulose hydrogels: effects of monomer, crosslinker and polysaccharide compositions. Polym Eng Sci. 2009;49: 12 24672474. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4. Kulkarni, RV, Sa, B. Electroresponsive polyacrylamide-grafted-xanthan hydrogels for drug delivery. J Bioact Compat Polym. 2009;24: 4 368384. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5. Sutar, P, Mishra, R, Pal, K, Banthia, A. Development of pH sensitive polyacrylamide grafted pectin hydrogel for controlled drug delivery system. J Mater Sci: Mater Med. 2008;19: 6 22472253. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6. Nakamura, K, Murray, RJ, Joseph, JI, Peppas, NA, Morishita, M, Lowman, AM. Oral insulin delivery using P(MAA-g-EG) hydrogels: effects of network morphology on insulin delivery characteristics. J Control Release. 2004;95: 3 589599. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7. Silva, FP. Síntese e caracterização de hidrogéis de poli[(N-isopropilacrilamida)-co-(ácido acrílico)] e sua aplicação como sistemas de liberação de medicamentos. Belo Horinzonte, Brasil: Universidade Federal de Minas Gerais; 2006.

    • Search Google Scholar
    • Export Citation
  • 8. Griffith, LG. Polymeric biomaterials. Acta Mater. 2000;48:263277. .

  • 9. Aouada, FA, de Moura, MR, Rubira, AF, Muniz, EC, Fernandes, PRG, Mukai, H, et al. Birefringent hydrogels based on PAAm and lyotropic liquid crystal: optical, morphological and hydrophilic characterization. Eur Polym J. 2006;42: 10 27812790. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10. Lopes, CM, Lobo, JMS, Costa, P. Formas farmacêuticas de liberação modificada: polímeros hidrifílicos. Braz J Pharm Sci. 2005;41:143154.

    • Search Google Scholar
    • Export Citation
  • 11. He, H, Guan, J, Lee, JL. An oral delivery device based on self-folding hydrogels. J Control Release. 2006;110: 2 339346. .

  • 12. Jain, RA. The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices. Biomaterials. 2000;21: 23 24752490. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13. Peppas, NA, Huang, Y, Torres-Lugo, M, Ward, JH, Zhang, J. Physicochemical foundations and structural design of hydrogels in medicine and biology. Annu Rev Biomed Eng. 2000;2: 1 929. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14. Brazel, CS, Peppas, NA. Synthesis and characterization of thermo- and chemomechanically responsive poly(N-isopropylacrylamide-co-methacrylic acid) hydrogels. Macromolecules. 1995;28: 24 80168020. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15. Matos, JR, Machado, LDB. Análise térmica—termogravimetria Canevarolo Junior, SV, eds. Técnicas de caracterização de polímeros. São Paulo: Artliber; 2004 209228.

    • Search Google Scholar
    • Export Citation
  • 16. Gabbott, P. Principles and applications of thermal analysis. 1 Oxford: Blackwell Publishing; 2008 .

  • 17. Neto, H, Novák, C, Matos, J. Thermal analysis and compatibility studies of prednicarbate with excipients used in semi solid pharmaceutical form. J Therm Anal Calorim. 2009;97: 1 367374. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18. Bernardi, L, Oliveira, P, Murakami, F, Silva, M, Borgmann, S, Cardoso, S. Characterization of venlafaxine hydrochloride and compatibility studies with pharmaceutical excipients. J Therm Anal Calorim. 2009;97: 2 729733. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19. Oliveira, P, Bernardi, L, Murakami, F, Mendes, C, Silva, M. Thermal characterization and compatibility studies of norfloxacin for development of extended release tablets. J Therm Anal Calorim. 2009;97: 2 741745. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20. Bruni, G, Berbenni, V, Milanese, C, Girella, A, Marini, A. Drug-excipient compatibility studies in binary and ternary mixtures by physico-chemical techniques. J Therm Anal Calorim. 2010;102: 1 193201. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21. Aouada, FA, Muniz, EC, Vaz, CMP, Mattoso, LHC. Correlação entre parâmetros da cinética de intumescimento com características estruturais e hidrofílicas de hidrogéis de poliacrilamida e metilcelulose. Quím Nova. 2009;32:14821490. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22. Vimala, K, Samba Sivudu, K, Murali Mohan, Y, Sreedhar, B, Mohana Raju, K. Controlled silver nanoparticles synthesis in semi-hydrogel networks of poly(acrylamide) and carbohydrates: a rational methodology for antibacterial application. Carbohydr Polym. 2009;75: 3 463471. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23. Mandal, BB, Kapoor, S, Kundu, SC. Silk fibroin/polyacrylamide semi-interpenetrating network hydrogels for controlled drug release. Biomaterials. 2009;30: 14 28262836. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24. Neto, CGT, Giacometti, JA, Job, AE, Ferreira, FC, Fonseca, JLC, Pereira, MR. Thermal analysis of chitosan based networks. Carbohydr Polym. 2005;62: 2 97103. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25. Bouwstra, JA, Salomons-de Vries, MA, van Miltenburg, JC. The thermal behaviour of water in hydrogels. Thermochim Acta. 1995;248:319327. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26. Khalid, MN, Agnely, F, Yagoubi, N, Grossiord, JL, Couarraze, G. Water state characterization, swelling behavior, thermal and mechanical properties of chitosan based networks. Eur J Pharm Sci. 2002;15: 5 425432. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27. Sun, J, Lu, J, Zhu, X, Zhang, K, Lu, Z, Zhu, J. Preparation and thermal decomposition of polyacrylamide and its derivatives by plasma initiated polymerization. J Therm Anal Calorim. 1999;58:301307. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28. Xia, Y-q, Guo, T-y, Song, M-d, Zhang, B-h, Zhang, B-l. Hemoglobin recognition by imprinting in semi-interpenetrating polymer network hydrogel based on polyacrylamide and chitosan. Biomacromolecules. 2005;6: 5 26012606. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29. Özeroglu, C, Sezgin, S. Polymerization of acrylamide initiated with Ce(IV)- and KMnO4-mercaptosuccinic acid redox systems in acid-aqueous medium. Express Polym Lett. 2007;1:132141. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30. Oh, SY, Yoo, DI, Shin, Y, Seo, G. FTIR analysis of cellulose treated with sodium hydroxide and carbon dioxide. Carbohydr Res. 2005;340: 3 417428. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31. Valente, AJM, Sobral, AJFN, Jiménez, A, Patachia, S, Oliveira, ARCB, Lobo, VMM. Effect of different electrolytes on the swelling properties of calyx[4]pyrrole-containing polyacrylamide membranes. Eur Polym J. 2006;42: 9 20592068. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32. Koschella A , Heinze T, Klemm D. First synthesis of 3-O-functionalized cellulose ethers via 2,6-di-O-protected silyl cellulose. Macromol Biosci. 2001;1(1):4954. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33. Liu, W, Zhang, B, Lu, WW, Li, X, Zhu, D, De Yao, K, et al. A rapid temperature-responsive sol-gel reversible poly(N-isopropylacrylamide)-g-methylcellulose copolymer hydrogel. Biomaterials. 2004;25: 15 30053012. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34. Sowwan, M, Faroun, M, Musa, I, Ibrahim, I, Makharza, S, Sultan, W, et al. Study on the morphology of polyacrylamide–silica fumed nanocomposite thin films. Int J Phys Sci. 2008;3: 6 144147.

    • Search Google Scholar
    • Export Citation
  • 35. Çaykara, T, Bulut, M, Demirci, S. Preparation of macroporous poly(acrylamide) hydrogels by radiation induced polymerization technique. Nucl Instrum Methods Phys Res Sect B. 2007;265: 1 366369. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36. Yu, H, Xu, Z, Lei, H, Hu, M, Yang, Q. Photoinduced graft polymerization of acrylamide on polypropylene microporous membranes for the improvement of antifouling characteristics in a submerged membrane-reactor. Sep Purif Technol. 2007;53: 1 119125. .

    • Crossref
    • Search Google Scholar
    • Export Citation

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Apr 2021 1 0 0
May 2021 0 0 0
Jun 2021 0 0 0
Jul 2021 5 0 0
Aug 2021 2 0 0
Sep 2021 1 0 0
Oct 2021 0 0 0