The composting process using sugarcane bagasse, animal manure, and urea as source of organic matter, microorganism, and nitrogen, respectively, were evaluated regarding the thermal behavior considering the maturation period: 0 (raw), 15, 22, 30, and 60 days. Thermogravimetric and differential thermal analysis curves were obtained in a synthetic air atmosphere and heating rate of 10 °C min−1 in the range of 30–600 °C. The raw compost showed 80% organic matter, which was reduced up to 58% to 60 days compost. Two main mass losses were verified, corresponding to characteristics exothermic peak in differential thermal analysis curves depending on the maturation period. The variation in organic composition was evaluated by Fourier transform infrared spectroscopy verifying the structures (lignin, cellulose, and hemicelluloses) changes with composting process, and the gas chromatography–mass spectrometry was used to identify substance soluble in hexane.
1. Oliveira ER . de. Organizadores de plantadores de cana da região centro-sul do Brasil. Fiscalização de laboratórios de análise da qualidade da cana-de açúcar. 2006.
2. Reynol F . Bagaço de Qualidade. In: Agência de notícias da Fundação de amparo à Pesquisa do Estado de São Paulo. 2009. http://www.agencia.fapesp.br/materia/11533/especiais/bagaco-de-qualidade.htm. Accessed 09 March 2010.
3. Mothé, CG, de Miranda, IC. Characterization of sugarcane and coconut fibers by thermal analysis and FTIR. J Therm Anal Calorim. 2009;97:661–665. .
4. Brossard LE , Cortez, LA, Braunbech OA, et al. Sistema de alimentação de biomassa polidispersa. In: Proceedings of the 3. Encontro de Energia no Meio Rural. 2003. http://www.proceedings.scielo.br/scielo.php?script=sci_arttext&pid=MSC0000000022000000200019&lng=en&nrm=iso. Accessed 13 March 2008.
5. Katyal, S, Thambimuthu, K, Valix, M. Carbonisation of bagasse in a fixed bed reactor: influence of process variables on char yield and characteristics. Renew Energy. 2003;28:713–725. .
6. Pietro, M, Castaldi, P. Thermal analysis for evaluation of the organic matter evolution during municipal solid waste aerobic composting process. Thermochim Acta. 2004;413:209–214. .
7. Almeida, S, Lima, EN, Crespi, MS, Ribeiro, CA, Schalch, V. Kinetic studies of urban solid and leachate from sanitary landfill. J Therm Anal Calorim. 2009;97:529–533. .
8. Silva, AR, Crespi, MS, Ribeiro, CA, Oliveira, SC, Silva, MRS. Kinetic of thermal degradation of residues from different kinds of composting. J Therm Anal Calorim. 2004;73:401–409. .
9. IUPAC. Compendium of Chemical Terminology, 2nd ed. (the “Gold Book”). Compiled by McNaught AD, Wilkinson A. Blackwell Scientific Publications, Oxford (1997) XML on-line corrected version: http://goldbook.iupac.org (2006-) created by Nic M, Jirat J, Kosata B; updates compiled by Jenkins A. ISBN 0-9678550-9-8. doi: 10.1351/goldbook. doi of this term: .
10. ASTM E 1756-01. Standard method for determination of total solids in biomass. 2001; 11.
11. Kiehl EJ . Manual de compostagem: maturação e qualidade do composto. 3rd ed. Piracicaba: edição do autor; 2002.
12. Harper, SHT, Lynch, JM. The chemical components and decomposition of wheat straw leaves, internodes and nodes. J Sci Food Agric. 1981;32:1057–1062. .
13. Sánchez-Monedero, MA, Roig, A, Cegarra, J, Bernal, MP. Relationships between water-soluble carbohydrate and phenol fractiona and the humification indices of different organic wastes during composting. Bioresour Technol. 1999;70:193–201. .
14. Boopathy, R, Beary, T, Templet, PJ. Microbial decomposition of post-harvest sugarcane residue. Bioresour Technol. 2001;79:29–33. .
15. Bernabé, GA. Dissertação de Mestrado em Química, Instituto de Química de Araraquara. São Paulo: Universidade Estadual Paulista; 2008 97.
16. Ernesto, VART. Dissertação de Mestrado em Química, Instituto de Química de Araraquara. São Paulo: Universidade Estadual Paulista; 2009 70.
17. Saliba, EOS, Rodriguez, NM, Morais, SAL, Piló-Veloso, D. Ligninas: métodos de obtenção e caracterização química. Ciência Rural. 2001;31:917–928. .
18. Baddi, GA, et al. Chemical and spectroscopic analyses of organic matter transformations during composting of olive mill wastes. Int Biodeterior Biodegrad. 2004;54:39–44. .
19. Rodrigues Filho, G, Assunção, RMN, Vieira, JG, Meireles, CS, Cerqueira, DA, Barud, HS, Ribeiro, SJL, Messadeq, Y. Characterization of methylcellulose produced from sugar cane bagasse cellulose: crystallinity and thermal properties. Polym Degrad Stab. 2007;92:205–210. .
20. Schalch, V. Dissertação de Mestrado em Hidráulica e Saneamento, Escola de Engenharia de São Carlos. São Paulo: Universidade de São Paulo; 1984 107.
21. Scagliusi SM , Grosseli D, Ruppenthal TE, Deon, AA. Estudos preliminares sobre o efeito da cafeína na duplicação cromossômica em plantas haplóides de cerrados (Hordeum vulgares). Documentos on line, Embrapa—Empresa Brasileira de Pesquisa Agropecuária. 2009;109:1–4.
22. Hammond, B, Katzenellenboggen, BS, Krauthammer, N, Mccnnel, J. Estrogenic activity of the insecticide chlordecone (kepone) and interaction with uterine estrogen receptors. Med Sci. 1979;76:6641.
23. Barbosa, LCA. Espectroscopia no Infravermelho na caracterização de compostos orgânicos. Viçosa: UFV; 2007 189.
24. Barud, HS. Dissertação de Mestrado em Química, Instituto de Química de Araraquara. São Paulo: Universidade Estadual Paulista; 2006 54.
25. Sun, RC, Sun, XF, Fowler, P, Tomkinson, J. Structural and physic-chemical characterization of lignins solubilized during alkaline peroxide treatment of barley straw. Eur Polym J. 2002;38:1399–1407. .
26. Xiao, B, Sun, XF, Sun, R. Chemical, structural, and thermal characterizations of alkali-soluble lignins and hemicelluloses, and cellulose form maize stem, rye straw, and rice straw. Polym Degrad Stab. 2001;74:307–319. .
27. Rohella, RS, Sahoo, N, Paul, SC, Choudhury, S, Chakravortty, V. Thermal studies on isolated and purified lignin. Thermochim Acta. 1996;287:131–138. .
28. Almeida, S. Tese de Doutorado em Química, Instituto de Química de Araraquara. São Paulo: Universidade Estadual Paulista; 2007 77.
29. Smidt, E, Meissl, K. The applicability of Fourier transform infrared (FT-IR) spectroscopy in waste management. Waste Manag. 2007;27:268–276. .
30. Provenzano, MR, Senesi, N, Miikki, V. Characterization of composts and humic acids from pulp and paper mill biosludges by DSC in association with FT-IR spectroscopy. J Therm Anal Calorim. 1998;52:1037–1046. .
31. Silverstein, RM. Identificação espectrofotométrica de compostos orgânicos. 3 Rio de Janeiro: Guanabara Dois; 1979 299.