Authors:
A. Ananthanarayanan Glass and Advanced Ceramics Division, Bhabha Atomic Research Centre, Mumbai, India

Search for other papers by A. Ananthanarayanan in
Current site
Google Scholar
PubMed
Close
,
A. Dixit Glass and Advanced Ceramics Division, Bhabha Atomic Research Centre, Mumbai, India

Search for other papers by A. Dixit in
Current site
Google Scholar
PubMed
Close
,
R. K. Lenka Energy Conversion Materials Section, Bhabha Atomic Research Centre, Mumbai, India

Search for other papers by R. K. Lenka in
Current site
Google Scholar
PubMed
Close
,
R. D. Purohit Energy Conversion Materials Section, Bhabha Atomic Research Centre, Mumbai, India

Search for other papers by R. D. Purohit in
Current site
Google Scholar
PubMed
Close
,
V. K. Shrikhande Glass and Advanced Ceramics Division, Bhabha Atomic Research Centre, Mumbai, India
Bhabha Atomic Research Centre, Mumbai 400085, India

Search for other papers by V. K. Shrikhande in
Current site
Google Scholar
PubMed
Close
, and
G. P. Kothiyal Glass and Advanced Ceramics Division, Bhabha Atomic Research Centre, Mumbai, India

Search for other papers by G. P. Kothiyal in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Lithium aluminum silicate (LAS) glasses of compositions (wt%) 10.6Li2O–71.7SiO2–7.1Al2O3–4.9K2O–3.2B2O3–1.25P2O5–1.25TiO2 were prepared by the melt quench technique. Crystallization kinetics was investigated by the method of Kissinger and Augis–Bennett using differential thermal analysis (DTA). Based on the DTA data, glass ceramics were prepared by single-, two-, and three-step heat treatment schedules. The interdependence of different phases formed, microstructure, thermal expansion coefficient (TEC) and microhardness (MH) was investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), thermo-mechanical analysis (TMA), and microhardness (MH) measurements. Crystallization kinetics revealed that Li2SiO3 is the kinetically favored phase with activation energy of 91.10 kJ/mol. An Avrami exponent of n = 3.33 indicated the dominance of bulk crystallization. Based upon the formation of phases, it was observed that the two-stage heat treatment results in highest TEC glass ceramics. The single-step heat treatment yielded glass ceramics with the highest MH.

  • 1. Macmillan, PW 1977 Glass-ceramics Academic Press New York.

  • 2. Khater, GA, Idris, MH 2007 Role of TiO2 and ZrO2 on the crystallizing phases and microstructure in Li,Ba aluminosilicate glass. Ceram Int 33:233238 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3. Riello, P, Canton, P, Comelato, N, Polizi, S, Verità, M, Fagherazzi, G, Hofmeister, H, Hopfe, S 2001 Nucleation and crystallization behaviour of glass-ceramic material in the Li2O-Al2O3-SiO2 system of interest for their transparency properties. J Non-Cryst Solids 288:127139 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4. Chatterjee, M, Naskar, MK 2006 Sol–gel synthesis of lithium aluminum silicate powders: the effect of silica source. Ceram Int 32:623632 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5. James, PF 1995 Glass-ceramics: new compositions and uses. J Non-Cryst Solids 181:115 .

  • 6. Tick, PA, Borrelli, NF, Reaney, IM 2008 Relationship between structure and transparency in glass-ceramic materials. Opt Mater 15:8191 .

  • 7. Scheidler H , Thurk J. The ceran-top-system®: high tech appliance for the kitchen. In: Low thermal expansion glass-ceramics, 1995.

  • 8. Cheng, K 1998 Carbon effects on the crystallization of Li2O-Al2O3-SiO2 glasses. J Non-Cryst Solids 238:152157 .

  • 9. Guo, X, Yang, H, Cao, M 2005 Nucleation and crystallization behavior of Li2O–Al2O3–SiO2 system glass–ceramic containing little fluorine and no-fluorine. J Non-Cryst Solids 351:21332137 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10. Guo, X, Yang, H, Han, C, Song, F 2006 Crystallization and microstructure of Li2O–Al2O3–SiO2 glass containing complex nucleating agent. Thermochim Acta 444:201205 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11. Hsu, JY, Speyer, RF 1989 Comparison of the effects of titania and tantalum oxide nucleating agents on the crystallization of Li2O–Al2O3–6SiO2 glasses. J Am Ceram Soc 72:23342341 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12. Hu, AM, Liang, KM, Zhou, F, Wang, GL, Weng, P 2005 Phase transformation of Li2O-Al2O3-SiO2 glasses with CeO2 addition. Ceram Int 31:1114 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13. Fernandes HR , Tulyaganov DU, Goel A, Ferreira JMF. Structural characterization and thermo-physical properties of glasses in the Li2O-SiO2-Al2O3-K2O system. J Therm Anal Calorim. 2010. doi: .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14. Li, Y, Liang, K, Xu, B, Co, J 2009 Crystallization mechanism and microstructure evolution of Li2O-Al2O3-SiO2 glass-ceramic with Ta2O5 as a nucleant. J Therm Anal Calorim 101:941948 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15. Ananthanarayanan, A, Sarkar, A, Shrikhande, VK, Tyagi, AK, Kothiyal, GP 2008 The effect of TiO2 addition on the crystallization and phase formation in lithium aluminum silicate (LAS) glasses nucleated by P2O5. J Phys Chem Solids 69:26222627 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16. Ananthanarayanan, A, Kothiyal, GP, Montagne, L, Revel, B 2010 MAS-NMR investigations of the crystallization behaviour of lithium aluminum silicate (LAS) glasses containing P2O5 and TiO2 nucleants. J Solid State Chem 183:14161422 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17. Ananthanarayanan, A, Tyagi, AK, Mishra, R, Shrikhande, VK, Kothiyal, GP 2008 Evolution of crystalline phases as a function of composition and dwell time in lithium aluminium silicate glass-ceramics. Phys Chem Glasses: Eur J Glass Sci Technol B 49:166173.

    • Search Google Scholar
    • Export Citation
  • 18. Sharma, BI, Goswami, M, Sengupta, P, Shrikhande, VK, Kale, GB, Kothiyal, GP 2004 Study on some thermo-physical properties in Li2O-ZnO-SiO2 glass-ceramics. Mater Lett 58:24232428 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19. Yilmaz, S, Ozkan, OT, Gunay, V 1996 Crystallization kinetics of basalt glass. Ceram Int 22:477481 .

  • 20. Elder, JP 1985 The general applicability of the Kissinger equation in thermal analysis. J Therm Anal Calorim 30:657669 .

  • 21. Augis, JA, Bennet, JE 1978 Calculation of Avrami parameters for heterogeneous solid state reaction using a modification of the Kissinger method. J Therm Anal Calorim 13:283292 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22. Headley, TJ, Loehman, RJ 1984 Crystallization of a glass-ceramics by epitaxial growth. J Am Ceram Soc 67:354361 .

  • 23. Goswami, M, Kothiyal, GP, Montagne, L, Delevoye, L 2008 MAS-NMR study of lithium zinc silicate glasses and glass-ceramics with various ZnO content. J Solid State Chem 181:269275 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24. Holland, D, Iqbal, Y, James, P, Lee, B 1998 Early stages of crystallisation of lithium disilicate glasses containing P2O5—an NMR study. J Non-Cryst Solids 232–234:140146 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25. Holland, W, Appel, E, Hoen, CVT, Rheinberger, V 2006 Studies of crystal phase formations in high-strength lithium disilicate glass–ceramics. J Non-Cryst Solids 352:40414050 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26. Shelby, JE 1997 Introduction to glass science and technology Royal Society of Chemistry Cambridge.

  • 27. Albakry, M, Guazzato, M, Swain, MV 2004 Biaxial flexural strength and microstructure changes of two recycled pressable glass-ceramics. J Prosth Dent 13:141149.

    • Search Google Scholar
    • Export Citation
  • 28. Reeser, MK 1969 Phase diagrams for ceramists American Ceramic Society Columbus, OH.

  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
1
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jan 2024 30 1 0
Feb 2024 16 0 1
Mar 2024 0 0 0
Apr 2024 48 0 0
May 2024 1 0 0
Jun 2024 7 0 0
Jul 2024 0 0 0