View More View Less
  • 1 Chemistry & Chemical Engineering College, Central South University, Changsha 410083, China
  • | 2 School of Chemistry & Biological Engineering, Changsha University of Science & Technology, Changsha 410114, China
Restricted access

Abstract

An experiment was done on electrochemical–calorimetry to identify the Peltier heats of the ferro-ferricyanide reversible electrode reaction over the concentration range of 0.075–0.3 mol dm−3 at 298.15 K. A new approach has been developed to obtain the standard potential of this electrode, which was identified as (+0.3580 ± 0.0030) volt at 298.15 K and compared with previously reported values. An equation derived from the approach is also applied to several standard couples, such as Fe(CN)6−3/Fe(CN)6−4, H+/H2, Cu2+/Cu, Cl/Hg2Cl2,Hg, Fe3+/Fe2+, and Cl/Cl2 to determine their respective reaction heats with satisfying results.

  • 1. Kolthoff, IM, Tomsicek, WJ. The oxidation potential of the system potassium ferrocyanide–potassium ferricyanide at various ionic strengths. J Phys Chem. 1935;39:945954. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2. RC Murray Jr , Rock, PA. The determination of the ferrocyanide—ferricyanide standard electrode potential at 25°C in cells without liquid junction using cation-sensitive glass electrodes. Electrochim Acta. 1968;13:969975. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3. Lin, J, Breck, WG. Entropy differences for some related pairs of complex ions. Can J Chem. 1965;43:766771. .

  • 4. Rock, PA. The standard oxidation potential of the ferrocyanide-ferricyanide electrode at 25° and the entropy of ferrocyanide ion. J Phys Chem. 1966;70:576580. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5. Hanania, GIH, Irvine, DH, Eaton, WA, George, P. Thermodynamic aspects of the potassium hexacyano-ferrate (III)- (II) system. II. Reduction potential. J Phys Chem. 1967;71:20222030. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6. Dean, JA, eds. Lange’s Handbook of Chemistry. 15 New York: McGraw-Hill; 1999.

  • 7. Kumar, SA, Lo, P. Chen Sh. Electrochemical selective determination of ascorbic acid at redox active polymer modified electrode derived from direct blue 71. Biosens Bioelectron. 2008;24:518523. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8. Zhang, W, Yang, T, Huang, D, Jiao, K, Li, G. Synergistic effects of nano-ZnO/multi-walled carbon nanotubes/chitosan nanocomposite membrane for the sensitive detection of sequence-specific of PAT gene and PCR amplification of NOS gene. J Membr Sci. 2008;325:245251. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9. Huang, Y, Nie, X, Gan, Sh, Jiang, J, Shen, G, Yu, R. Electrochemical immunosensor of platelet-derived growth factor with aptamer-primed polymerase amplification. Anal Biochem. 2008;382:1622. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10. Fredenhagen, C. Zur Theorie der oxydations und reduktionsketten. Z Anorg Allgem Chem. 1902;29:396458.

  • 11. O’Reilly, JE. Oxidation-reduction potential of the ferro-ferricyanide system in buffer solutions. Biochim Biophys Acta. 1973;292:509515. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12. Fang, Z, Zhang, Q, Zhang, H, Fang, Y. Thermoelectrochemistry and its application to metallurgical research. J Mater Sci Technol. 2001;17:s20s24.

    • Search Google Scholar
    • Export Citation
  • 13. Qiu, F, Compton, RG, Coles, BA, Marken, F. Thermal activation of electrochemical processes in a Rf-heated channel flow cell: experiment and finite element simulation. J Electroanal Chem. 2000;492:150155. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14. Boudeville, P. Thermometric determination of electrochemical Peltier heat (thermal effect associated with electron transfer) of some redox couples. Inorg Chim Acta. 1994;226:6978. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15. Nakajima, H, Nohira, T, Ito, Y. The single electrode Peltier heats of Li+/Li, H2/H and Li+/Pd–Li couples in molten LiCl–KCl systems. Electrochim Acta. 2004;49:49874991. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16. Maeda, Y, Kumagai, T. Electrochemical Peltier heat in the polypyrrole-electrolyte system. Thermochim. Acta. 1995;267:139148. .

  • 17. Kuz’minskii, YV, Andriiko, AA. Thermal analysis of electrochemical reactions: Part II. The non-stationary temperature wave method—A method for the determination of Peltier heats at the electrode/molten electrolyte interface. J Electroanal Chem. 1998;252:3952. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18. Xu, Q, Kjelstrup, S, Hafskjold, B. Estimation of single electrode heats. Electrochim Acta. 1998;43:25972603. .

  • 19. Ito, Y, Kaiya, H, Yoshizawa, S, Ratkje, SK, Forland, T. Electrode heat balances of electrochemical cells. J Electrochem Soc. 1984;131:25042509. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20. Wang, SF, Fang, Z, Tai, YF. Application of thermo-electrochemistry to simultaneous leaching of sphalerite and MnO2. J Therm Anal Calorim. 2006;85:741743. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21. Soto, MB, Kubsch, G, Scholz, F. Cyclic voltammetry of immobilized microparticles with in situ calorimetry: Part I: The thermistor electrode. J Electroanal Chem. 2002;528:1826. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22. Fang, Z. Some basic matters on the heat effects at electrode–electrolyte interfaces. Thermochim Acta. 2011;516:17. .

  • 23. Lange, E, Mishchenko, KP. The thermodynamics of the solvation of ions. Z Phys Chem. 1930;A149:141.

  • 24. Boudeville, P, Tallec, A. Electrochemistry and calorimetry coupling: IV. Determination of electrochemical Peltier heat. Thermochim Acta. 1988;126:221234. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25. Vetter, KJ. Electrochemical kinetics: theoretical and experimental aspects. New York: Academic Press; 1967.

  • 26. Bard, AJ, Parsons, R, Jordan, J. Standard potentials in aqueous solution. New York: Marcel Dekker; 1985.

  • 27. Cobble, JW. The thermodynamic properties of high temperature aqueous solutions. J Am Chem Soc. 1964;86:53945401. .

  • 28. Jiang, Z, Zhang, J, Dong, L, Zhuang, J. Determination of the entropy change of the electrode reaction by an ac electrochemical–thermal method. J Electroanal Chem. 1999;469:110. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29. Zheng, H, Zhang, P, Fang, Z. Calorimetry of electrode reaction under linear sweep-current polarization. J Therm Anal. 1995;45:151156. .

  • 30. Klotz IM , Rosenberg RM. Chemical thermodynamics, 3rd ed, New York: Benjamin WA Inc; 1972.

  • 31. Fang, Z, Wang, S, Zhang, Z, Qiu, G. The electrochemical Peltier heat of the standard hydrogen electrode reaction. Thermochim Acta. 2008;473:4044. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32. Huang ZQ . Introduction to theory of electrolyte solution, Revised ed. Beijing: Science Press, 1983. (in Chinese).

  • 33. Latimer, WM. The oxidation states of the elements and their potentials in aqueous solution. New Jersey: Prentice Hall; 1952.

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)