Authors:
Zheng FangChemistry & Chemical Engineering College, Central South University, Changsha 410083, China

Search for other papers by Zheng Fang in
Current site
Google Scholar
PubMed
Close
,
Shaofen WangSchool of Chemistry & Biological Engineering, Changsha University of Science & Technology, Changsha 410114, China

Search for other papers by Shaofen Wang in
Current site
Google Scholar
PubMed
Close
, and
Zhenghua ZhangChemistry & Chemical Engineering College, Central South University, Changsha 410083, China

Search for other papers by Zhenghua Zhang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

An experiment was done on electrochemical–calorimetry to identify the Peltier heats of the ferro-ferricyanide reversible electrode reaction over the concentration range of 0.075–0.3 mol dm−3 at 298.15 K. A new approach has been developed to obtain the standard potential of this electrode, which was identified as (+0.3580 ± 0.0030) volt at 298.15 K and compared with previously reported values. An equation derived from the approach is also applied to several standard couples, such as Fe(CN)6−3/Fe(CN)6−4, H+/H2, Cu2+/Cu, Cl/Hg2Cl2,Hg, Fe3+/Fe2+, and Cl/Cl2 to determine their respective reaction heats with satisfying results.

  • 1. Kolthoff, IM, Tomsicek, WJ. The oxidation potential of the system potassium ferrocyanide–potassium ferricyanide at various ionic strengths. J Phys Chem. 1935;39:945954. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2. RC Murray Jr , Rock, PA. The determination of the ferrocyanide—ferricyanide standard electrode potential at 25°C in cells without liquid junction using cation-sensitive glass electrodes. Electrochim Acta. 1968;13:969975. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3. Lin, J, Breck, WG. Entropy differences for some related pairs of complex ions. Can J Chem. 1965;43:766771. .

  • 4. Rock, PA. The standard oxidation potential of the ferrocyanide-ferricyanide electrode at 25° and the entropy of ferrocyanide ion. J Phys Chem. 1966;70:576580. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5. Hanania, GIH, Irvine, DH, Eaton, WA, George, P. Thermodynamic aspects of the potassium hexacyano-ferrate (III)- (II) system. II. Reduction potential. J Phys Chem. 1967;71:20222030. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6. Dean, JA, eds. Lange’s Handbook of Chemistry. 15 New York: McGraw-Hill; 1999.

  • 7. Kumar, SA, Lo, P. Chen Sh. Electrochemical selective determination of ascorbic acid at redox active polymer modified electrode derived from direct blue 71. Biosens Bioelectron. 2008;24:518523. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8. Zhang, W, Yang, T, Huang, D, Jiao, K, Li, G. Synergistic effects of nano-ZnO/multi-walled carbon nanotubes/chitosan nanocomposite membrane for the sensitive detection of sequence-specific of PAT gene and PCR amplification of NOS gene. J Membr Sci. 2008;325:245251. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9. Huang, Y, Nie, X, Gan, Sh, Jiang, J, Shen, G, Yu, R. Electrochemical immunosensor of platelet-derived growth factor with aptamer-primed polymerase amplification. Anal Biochem. 2008;382:1622. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10. Fredenhagen, C. Zur Theorie der oxydations und reduktionsketten. Z Anorg Allgem Chem. 1902;29:396458.

  • 11. O’Reilly, JE. Oxidation-reduction potential of the ferro-ferricyanide system in buffer solutions. Biochim Biophys Acta. 1973;292:509515. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12. Fang, Z, Zhang, Q, Zhang, H, Fang, Y. Thermoelectrochemistry and its application to metallurgical research. J Mater Sci Technol. 2001;17:s20s24.

    • Search Google Scholar
    • Export Citation
  • 13. Qiu, F, Compton, RG, Coles, BA, Marken, F. Thermal activation of electrochemical processes in a Rf-heated channel flow cell: experiment and finite element simulation. J Electroanal Chem. 2000;492:150155. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14. Boudeville, P. Thermometric determination of electrochemical Peltier heat (thermal effect associated with electron transfer) of some redox couples. Inorg Chim Acta. 1994;226:6978. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15. Nakajima, H, Nohira, T, Ito, Y. The single electrode Peltier heats of Li+/Li, H2/H and Li+/Pd–Li couples in molten LiCl–KCl systems. Electrochim Acta. 2004;49:49874991. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16. Maeda, Y, Kumagai, T. Electrochemical Peltier heat in the polypyrrole-electrolyte system. Thermochim. Acta. 1995;267:139148. .

  • 17. Kuz’minskii, YV, Andriiko, AA. Thermal analysis of electrochemical reactions: Part II. The non-stationary temperature wave method—A method for the determination of Peltier heats at the electrode/molten electrolyte interface. J Electroanal Chem. 1998;252:3952. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18. Xu, Q, Kjelstrup, S, Hafskjold, B. Estimation of single electrode heats. Electrochim Acta. 1998;43:25972603. .

  • 19. Ito, Y, Kaiya, H, Yoshizawa, S, Ratkje, SK, Forland, T. Electrode heat balances of electrochemical cells. J Electrochem Soc. 1984;131:25042509. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20. Wang, SF, Fang, Z, Tai, YF. Application of thermo-electrochemistry to simultaneous leaching of sphalerite and MnO2. J Therm Anal Calorim. 2006;85:741743. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21. Soto, MB, Kubsch, G, Scholz, F. Cyclic voltammetry of immobilized microparticles with in situ calorimetry: Part I: The thermistor electrode. J Electroanal Chem. 2002;528:1826. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22. Fang, Z. Some basic matters on the heat effects at electrode–electrolyte interfaces. Thermochim Acta. 2011;516:17. .

  • 23. Lange, E, Mishchenko, KP. The thermodynamics of the solvation of ions. Z Phys Chem. 1930;A149:141.

  • 24. Boudeville, P, Tallec, A. Electrochemistry and calorimetry coupling: IV. Determination of electrochemical Peltier heat. Thermochim Acta. 1988;126:221234. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25. Vetter, KJ. Electrochemical kinetics: theoretical and experimental aspects. New York: Academic Press; 1967.

  • 26. Bard, AJ, Parsons, R, Jordan, J. Standard potentials in aqueous solution. New York: Marcel Dekker; 1985.

  • 27. Cobble, JW. The thermodynamic properties of high temperature aqueous solutions. J Am Chem Soc. 1964;86:53945401. .

  • 28. Jiang, Z, Zhang, J, Dong, L, Zhuang, J. Determination of the entropy change of the electrode reaction by an ac electrochemical–thermal method. J Electroanal Chem. 1999;469:110. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29. Zheng, H, Zhang, P, Fang, Z. Calorimetry of electrode reaction under linear sweep-current polarization. J Therm Anal. 1995;45:151156. .

  • 30. Klotz IM , Rosenberg RM. Chemical thermodynamics, 3rd ed, New York: Benjamin WA Inc; 1972.

  • 31. Fang, Z, Wang, S, Zhang, Z, Qiu, G. The electrochemical Peltier heat of the standard hydrogen electrode reaction. Thermochim Acta. 2008;473:4044. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32. Huang ZQ . Introduction to theory of electrolyte solution, Revised ed. Beijing: Science Press, 1983. (in Chinese).

  • 33. Latimer, WM. The oxidation states of the elements and their potentials in aqueous solution. New Jersey: Prentice Hall; 1952.

  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
1
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Aug 2022 0 0 0
Sep 2022 4 0 0
Oct 2022 2 0 0
Nov 2022 0 0 0
Dec 2022 2 0 1
Jan 2023 0 0 0
Feb 2023 0 0 0