An experiment was done on electrochemical–calorimetry to identify the Peltier heats of the ferro-ferricyanide reversible electrode reaction over the concentration range of 0.075–0.3 mol dm−3 at 298.15 K. A new approach has been developed to obtain the standard potential of this electrode, which was identified as (+0.3580 ± 0.0030) volt at 298.15 K and compared with previously reported values. An equation derived from the approach is also applied to several standard couples, such as Fe(CN)6−3/Fe(CN)6−4, H+/H2, Cu2+/Cu, Cl−/Hg2Cl2,Hg, Fe3+/Fe2+, and Cl−/Cl2 to determine their respective reaction heats with satisfying results.
1. Kolthoff, IM, Tomsicek, WJ. The oxidation potential of the system potassium ferrocyanide–potassium ferricyanide at various ionic strengths. J Phys Chem. 1935;39:945–954. .
2. RC Murray Jr , Rock, PA. The determination of the ferrocyanide—ferricyanide standard electrode potential at 25°C in cells without liquid junction using cation-sensitive glass electrodes. Electrochim Acta. 1968;13:969–975. .
3. Lin, J, Breck, WG. Entropy differences for some related pairs of complex ions. Can J Chem. 1965;43:766–771. .
4. Rock, PA. The standard oxidation potential of the ferrocyanide-ferricyanide electrode at 25° and the entropy of ferrocyanide ion. J Phys Chem. 1966;70:576–580. .
5. Hanania, GIH, Irvine, DH, Eaton, WA, George, P. Thermodynamic aspects of the potassium hexacyano-ferrate (III)- (II) system. II. Reduction potential. J Phys Chem. 1967;71:2022–2030. .
6. Dean, JA, eds. Lange’s Handbook of Chemistry. 15 New York: McGraw-Hill; 1999.
7. Kumar, SA, Lo, P. Chen Sh. Electrochemical selective determination of ascorbic acid at redox active polymer modified electrode derived from direct blue 71. Biosens Bioelectron. 2008;24:518–523. .
8. Zhang, W, Yang, T, Huang, D, Jiao, K, Li, G. Synergistic effects of nano-ZnO/multi-walled carbon nanotubes/chitosan nanocomposite membrane for the sensitive detection of sequence-specific of PAT gene and PCR amplification of NOS gene. J Membr Sci. 2008;325:245–251. .
9. Huang, Y, Nie, X, Gan, Sh, Jiang, J, Shen, G, Yu, R. Electrochemical immunosensor of platelet-derived growth factor with aptamer-primed polymerase amplification. Anal Biochem. 2008;382:16–22. .
10. Fredenhagen, C. Zur Theorie der oxydations und reduktionsketten. Z Anorg Allgem Chem. 1902;29:396–458.
11. O’Reilly, JE. Oxidation-reduction potential of the ferro-ferricyanide system in buffer solutions. Biochim Biophys Acta. 1973;292:509–515. .
12. Fang, Z, Zhang, Q, Zhang, H, Fang, Y. Thermoelectrochemistry and its application to metallurgical research. J Mater Sci Technol. 2001;17:s20–s24.
13. Qiu, F, Compton, RG, Coles, BA, Marken, F. Thermal activation of electrochemical processes in a Rf-heated channel flow cell: experiment and finite element simulation. J Electroanal Chem. 2000;492:150–155. .
14. Boudeville, P. Thermometric determination of electrochemical Peltier heat (thermal effect associated with electron transfer) of some redox couples. Inorg Chim Acta. 1994;226:69–78. .
15. Nakajima, H, Nohira, T, Ito, Y. The single electrode Peltier heats of Li+/Li, H2/H− and Li+/Pd–Li couples in molten LiCl–KCl systems. Electrochim Acta. 2004;49:4987–4991. .
16. Maeda, Y, Kumagai, T. Electrochemical Peltier heat in the polypyrrole-electrolyte system. Thermochim. Acta. 1995;267:139–148. .
17. Kuz’minskii, YV, Andriiko, AA. Thermal analysis of electrochemical reactions: Part II. The non-stationary temperature wave method—A method for the determination of Peltier heats at the electrode/molten electrolyte interface. J Electroanal Chem. 1998;252:39–52. .
18. Xu, Q, Kjelstrup, S, Hafskjold, B. Estimation of single electrode heats. Electrochim Acta. 1998;43:2597–2603. .
19. Ito, Y, Kaiya, H, Yoshizawa, S, Ratkje, SK, Forland, T. Electrode heat balances of electrochemical cells. J Electrochem Soc. 1984;131:2504–2509. .
20. Wang, SF, Fang, Z, Tai, YF. Application of thermo-electrochemistry to simultaneous leaching of sphalerite and MnO2. J Therm Anal Calorim. 2006;85:741–743. .
21. Soto, MB, Kubsch, G, Scholz, F. Cyclic voltammetry of immobilized microparticles with in situ calorimetry: Part I: The thermistor electrode. J Electroanal Chem. 2002;528:18–26. .
22. Fang, Z. Some basic matters on the heat effects at electrode–electrolyte interfaces. Thermochim Acta. 2011;516:1–7. .
23. Lange, E, Mishchenko, KP. The thermodynamics of the solvation of ions. Z Phys Chem. 1930;A149:1–41.
24. Boudeville, P, Tallec, A. Electrochemistry and calorimetry coupling: IV. Determination of electrochemical Peltier heat. Thermochim Acta. 1988;126:221–234. .
25. Vetter, KJ. Electrochemical kinetics: theoretical and experimental aspects. New York: Academic Press; 1967.
26. Bard, AJ, Parsons, R, Jordan, J. Standard potentials in aqueous solution. New York: Marcel Dekker; 1985.
27. Cobble, JW. The thermodynamic properties of high temperature aqueous solutions. J Am Chem Soc. 1964;86:5394–5401. .
28. Jiang, Z, Zhang, J, Dong, L, Zhuang, J. Determination of the entropy change of the electrode reaction by an ac electrochemical–thermal method. J Electroanal Chem. 1999;469:1–10. .
29. Zheng, H, Zhang, P, Fang, Z. Calorimetry of electrode reaction under linear sweep-current polarization. J Therm Anal. 1995;45:151–156. .
30. Klotz IM , Rosenberg RM. Chemical thermodynamics, 3rd ed, New York: Benjamin WA Inc; 1972.
31. Fang, Z, Wang, S, Zhang, Z, Qiu, G. The electrochemical Peltier heat of the standard hydrogen electrode reaction. Thermochim Acta. 2008;473:40–44. .
32. Huang ZQ . Introduction to theory of electrolyte solution, Revised ed. Beijing: Science Press, 1983. (in Chinese).
33. Latimer, WM. The oxidation states of the elements and their potentials in aqueous solution. New Jersey: Prentice Hall; 1952.