The objective of this article is to study an amorphous superabsorbent polymer, which is able to absorb up to 300 times its weight of water. Adsorption–desorption phenomena of water vapor on the polymer as a function of temperature showed a reversibility of the adsorption–desorption phenomena. The thermal stability of the polymer at atmospheric pressure was also studied. The kinetic study of the desorption phenomena of water vapor on the polymer according to certain physicochemical parameters was discussed. The results showed that the kinetic regime governing the desorption phenomena of water vapor on the polymer is a process limited by a mono-dimensional diffusion for low masses and by a three-dimensional diffusion for high masses.
1. Xie, G, Sheng, G, Bansal, PK, Li, G. Absorber performance of a water/lithium–bromide absorption chiller. Appl Therm Eng. 2008;28:1557–1562. .
2. Rivera, CO, Rivera, W. Modeling of an intermittent solar absorption refrigeration system operating with ammonia–lithium nitrate mixture. Sol Energy Mater Sol C. 2003;76:417–427. .
3. Misra, RD, Sahoo, PK, Sahoo, S, Gupta, A. Thermoeconomic optimization of a single effect water/LiBr vapour absorption refrigeration system. Int J Refrig. 2003;26:158–169. .
4. Buchet, F, Dind, Ph, Pons, M. An experimental solar-powered adsorptive refrigerator tested in Burkina-Faso. Int J Refrig. 2003;26:79–86. .
5. Kato, Y, Takahashi, F, Watanabe, A, Yoshizawa, Y. Thermal analysis of a magnesium oxide/water chemical heat pump for cogeneration. Appl Therm Eng. 2001;21:1067–1081. .
6. Fujimoto, S, Bilgen, E, Ogura, H. CaO/Ca(OH)2 chemical heat pump system. Energy Convers Manag. 2002;43:947–960. .
7. Karaca, F, Kincay, O, Bolat, E. Economic analysis and comparison of chemical heat pump systems. Appl Therm Eng. 2002;22:1789–1799. .
8. Sharonov, VE, Aristov, YuI. Chemical and adsorption heat pumps: comments on the second law efficiency. Chem Eng J. 2008;136:419–424. .
9. Bevers, ERT, Van Ekeren, PJ, Haije, WG, Oonk, HAJ. Thermodynamic properties of lithium chloride ammonia complexes for application in a high-lift high temperature chemical heat pump. J Therm Anal Calorim. 2006;86:825–832. .
10. Wang, DC, Wang, YJ, Zhang, JP, Tian, XL, Wu, JY. Experimental study of adsorption chiller driven by variable heat source. Energy Convers Manag. 2008;49:1063–1073. .
11. Núñez, T, Mittelbach, W, Henning, HM. Development of an adsorption chiller, heat pump for domestic heating, air-conditioning applications. Appl Therm Eng. 2007;27:2205–2212. .
12. Xia, Z, Wang, D, Zhang, J. Experimental study on improved two-bed silica gel–water adsorption chiller. Energy Convers Manag. 2008;49:1469–1479. .
13. Li, G, Liu, D, Xie, Y. Study on thermal properties of TBAB–THF hydrate mixture for cold storage by DSC. J Therm Anal Calorim. 2010;102:819–826. .
14. Rübner, K, Balkőse, D, Robens, E. Methods of humidity determination. Part II: determination of material humidity. J Therm Anal Calorim. 2008;94:675–682. .
15. Wang, X, Chua, HT. Two bed silica gel–water adsorption chillers: an effectual lumped parameter model. Int J Refrig. 2007;30:1417–1426. .
16. Sang, JY. Analysis of the performance of a multi-bed adsorption heat pump using a solid-side resistance model. Appl Therm Eng. 2006;26:2219–2227. .
17. Lemmini, F, Errougani, A. Experimentation of a solar adsorption refrigerator in Morocco. Renew Energy. 2007;32:2629–2641. .
18. Aristov, YuI, Dawoud, B, Glaznev, IS, Elyas, A. A new methodology of studying the dynamics of water sorption/desorption under real operating conditions of adsorption heat pumps: experiment. Int J Heat Mass Transf. 2008;51:4966–4972. .
19. Lu, YZ, Wang, RZ, Zhang, M, Jiangzhou, S. Adsorption cold storage system with zeolite–water working pair used for locomotive air conditioning. Energy Convers Manag. 2003;44:1733–1743. .
20. Snellings, R, Mertens, G, Elsen, J. Calorimetric evolution of the early pozzolanic reaction of natural zeolites. J Therm Anal Calorim. 2009;101:97–105. .
21. Tahat, MA. Heat-pump/energy-store using silica gel and water as a working pair. Appl Energy. 2001;69:19–27. .
22. Aristov, YI, Kovalevskaya, YA, Tokarev, MM, Paukov, IE. Low temperature heat capacity of the system “silica gel–calcium chloride–water”. J Therm Anal Calorim. 2011;103:773–778. .
23. Wang, X, Zimmermann, W, Ng, KC, Chakraboty, A, Keller, JU. Investigation on the isotherm of silica gel+water systems. J Therm Anal Calorim. 2004;76:659–669. .
24. Anyanwu, EE, Ogueke, NV. Transient analysis and performance prediction of a solid adsorption solar refrigerator. Appl Therm Eng. 2007;27:2514–2523. .
25. Anyanwu, EE, Oteh, UU, Ogueke, NV. Simulation of a solid adsorption solar refrigerator using activated carbon/methanol adsorbent/refrigerant pair. Energy Convers Manag. 2001;42:899–915. .
26. Toribio, F, Bellat, JP, Nguyen, PH, Dupont, M. Adsorption of water vapor by poly(styrenesulfonic acid)sodium salt: isothermal and isobaric adsorption equilibria. J Colloid Interface Sci. 2004;280:315–321. .
27. Tong, Z, Lixin, S, Zuoda, S, Shoujia, S, Zhongyi, H. A new refrigerant-superabsorbent hydrogel. International Sorption Heat Pump Conference; 2008 Sep 23–26; Seoul.
28. Bakass, M, Bellat, JP, Mokhlisse, A, Bertrand, G. The adsorption of water vapor on super absorbent product at low temperatures, low mass. J Appl Polym Sci. 2006;100:1450–1456. .
29. Bakass, M, Mokhisse, A, Lallemant, M. Adsorption et désorption de l’eau vapeur sur un polymère polyacrylique superabsorbant: Partie 1. Isothermes et chaleurs d’adsorption de l’eau vapeur sur le polymère. Thermochim Acta. 1992;204:205–212. .
30. Bakass, M, Bellat, JP, Bertrand, G. Characterization of a superabsorbent polymer. J Appl Polym Sci. 2007;104:782–786. .
31. Őzacar, M, Şengil, İA, Trkmenler, H. Equilibrium, kinetic data, and adsorption mechanism for adsorption of lead onto valonia tannin resin. Chem Eng J. 2008;143:32–42. .
32. Sharp, JH, Brindley, GW, Narhari Achar, B. Numerical data for some commonly used solid state reaction equations. J Am Ceram Soc. 1966;49:379–382. .
33. Bakass, M, Mokhlisse, A, Lallemant, M. Adsorption et desorption de l’eau vapeur sur un polymere polyacrylique superabsorbant IV. Effect de la masse sur les cinétiques d’adsorption et de désorption. Thermochim Acta. 1997;290:227–238. .