Ca–bentonite originating from a Romanian deposit was leached in 0.5–8.0 M HCl solution at 90 °C for 4 h. This material was fully characterized through BET, thermogravimetry, X-rays diffraction, and elemental analysis. The acid treatment at high temperature altered the crystallinity, but produced an increase in the surface area and thermal stability. The resulting acid-treated bentonite turned out to be an efficient adsorbent in both liquid and gaseous media. The changes of the clay mineral properties were discussed in terms of structural modification of the bulk material and increase in the number of edge terminal aluminol and silanol sites. The kinetic parameters of first dehydration step, reaction order (n), apparent activation energy (Ea) and pre-exponential factor (ln A) were calculated by the Freeman–Carroll method.
1. Makhoukhi, B, Didi, MA, Moulessehoul, H, Azzouz, A, Villemin, D. Diphosphonium ion-exchanged montmorillonite for Telon dye removal from aqueous media. Appl Clay Sci. 2010;50: 3 354–361. .
2. Makhoukhi, B, Didi, MA, Villemin, D, Azzouz, A. Acid activation of Bentonite for use as a vegetable oil bleaching agent. Grasas Y Aceites. 2009;60: 4 343–349. .
3. Didi, MA, Makhoukhi, B, Azzouz, A, Villemin, D. Colza oil bleaching through optimized acid activation of bentonite. A comparative study. Appl Clay Sci. 2009;42:336–344. .
4. Assaad, E, Azzouz, A, Nistor, D, Ursu, AV, Sajin, T, Miron, DN, Monette, F, Niquette, P, Hausler, R. Metals removal through synergic coagulation-flocculation using an optimized chitosan-montmorillonite system. Appl Clay Sci. 2007;37:258–274. .
5. Komadel, P, Schmidt, D, Madejová, J, Číčel, B. Alteration of smectites by treatments with hydrochloric acid and sodium carbonate solutions. Appl Clay Sci. 1990;5:113–122. .
6. Christidis, GE, Scott, PW, Dunham, AC. Acid activation and bleaching capacity of bentonites from the islands of Milos and Chios, Aegean, Greece. Appl Clay Sci. 1997;12:329–347. .
7. Azzouz, A, Messad, D, Nistor, D, Catrinescu, A, Zvolinschi, A, Asaftei, S. Vapor phase aldol condensation over fully ion-exchanged montmorillonite-rich catalysts. Appl Catal A. 2003;241:1–13. .
8. Azzouz, A, Nistor, D, Miron, D, Ursu, AV, Sajin, T, Monette, F, Niquette, P, Hausler, R. Assessment of the acid-base strength distribution of ion-exchanged montmorillonites through NH3 and CO2-TPD measurements. Thermochim Acta. 2006;449:27–34. .
9. Azzouz, A, Ursu, A-V, Nistor, D, Sajin, T, Assaad, E, Roy, R. TPD study of the reversible retention of carbon dioxide over montmorillonite intercalated with polyol dendrimers. Thermochim Acta. 2009;496:45–49. .
10. Azzouz, A, Assaad, E, Ursu, AV, Sajin, T, Nistor, D. Carbon dioxide retention over montmorillonite-dendrimer materials. Appl Clay Sci. 2010;48: 1–2 133–137. .
11. Azzouz, A, Kotbi, A, Niquette, P, Ursu, AV, Monette, F, Hausler, R. Ozonation of oxalic acid catalyzed by ion-exchanged montmorillonites in moderately acidic media. React Kinet Mech Catal. 2010;99: 2 289–302.
12. Komadel, P. Chemically modified smectites. Clays Miner. 2003;38:127–138. .
13. Hocine, O, Boufatit, M, Khouider, A. Use of montmorillonite clays as adsorbents of hazardous pollutants. Desalination. 2004;167:141–145. .
14. Novikova, LA, Bel’chinskaya, LI, Roessner, F. Effect of treatment with acids on the state of the surface of natural clay minerals. Russ J Phys Chem. 2006;80: 1 S185–S188. .
15. Akimbaeva, AM, Ergozhin, EE. Estimation of structural and sorption characteristics of activated bentonite. Colloid J. 2007;69: 4 401–406. .
16. Bergaya, F, Theng, BKG, Lagaly, G. Handbook of clay science—developments in clay science. 1 Amsterdam: Elsevier; 2006.
17. Fernandez-Saavedra, R, Darder, M, Gomez-Aviles, A, Aranda, P, Ruiz-Hitzky, E. Polymer–clay nanocomposites as precursors of nanostructured carbon materials for electrochemical devices: templating effect of clays. J Nanosci Nanotechnol. 2008;8: 4 1741–1750. .
18. Grim, RE. Applied clay mineralogy. New York: McGraw-Hill; 1962.
19. Fijal, J, Klapyta, Z, Kwieciuska, B, Zietkiewitcz, J, Zyla, M. On the mechanism of acid activation of montmorillonite. II. Changes in the morphology and porosity in the light of electron microscopic and adsorption investigations. Miner Pol. 1975;6:49–57.
20. Novak, I, Cicel, B. Dissolution of smectites in hydrochloric acid: II. Dissolution rate as a function of crystallochemical composition. Clays Clay Miner. 1978;26:341–344. .
21. Srasra, E, Bergaya, F, van Damme, H, Arguib, NK. Surface properties of an activated bentonite. Decolorization of rape-seed oil. Appl Clay Sci. 1989;4:411–421. .
22. Kaviratna, H, Pinnavaia, T. Acid hydrolysis of octahedral Mg2+ sites in 2:l layered silicates: an assessment of edge attack and gallery access mechanisms. Clays Clay Miner. 1994;42:717–723. .
23. Gates, WP, Anderson, JS, Raven, MD, Churchman, GJ. Mineralogy of a bentonite from Miles, Queensland, Australia and characterization of its acid activation products. Appl Clay Sci. 2002;20:189–197. .
24. Steudel, A, Batenburg, LF, Fisher, HR, Weidler, PG, Emmerich, K. Alteration of swelling clay minerals by acid activation. Appl Clay Sci. 2009;44: 1–2 105–115. .
25. Alemdaroglu, T, Akkus, G, Onal, M, Sarikaya, Y. Investigation of the surface acidity of a bentonite modified by acid activation and thermal treatment. Turk J Chem. 2003;27:675–681.
26. Venaruzzo, JL, Volzone, C, Rueda, ML, Ortiga, J. Modified bentonitic clay minerals as adsorbents of CO, CO2 and SO2 gases. Microporous Mesoporous Mater. 2002;56:73–80. .
27. Zhansheng, W, Chun, L, Xifang, S, Xiaolin, U, Bin, D, Jin’e, L, Hongsheng, Z. Characterization, acid activation and bleaching performance of bentonite from Xinjiang. Chin J Chem Eng. 2006;14: 2 253–258. .
28. Fethi, K, Ping, CH, Quek, W, Solhe, FA, Fengxi, C. Effect of the acid-activated clays on the properties of porous clay heterostructures. J Porous Mat. 2006;13:319–324. .
29. Önal, M, Sarikaya, Y. Preparation and characterization of acid-activated bentonite powders. Powder Technol. 2007;172:14–18. .
30. Finevich, VP, Allert, NA, Karpova, TR, Duplyakin, VK. Composite nanomaterials on the basis of acid-activated montmorillonites. Russ J Gen Chem. 2007;77: 12 2265–2271. .
31. Noyan, H, Onal, M, Sarikaya, Y. The effect of sulphuric acid activation on the crystallinity, surface area, porosity, surface acidity, and bleaching power of a bentonite. Food Chem. 2007;105:156–163. .
32. Novakovic, T, Rozic, L, Petrovic, S, Rosic, A. Synthesis and characterization of acid-activated Serbian smectite clays obtained by statistically designed experiments. Chem Eng J. 2008;137:436–442. .
33. Valenzuela Diaz, FR, Souza Santos, P. Studies on the activation of Brazilian smectitic clays. Quim Nova. 2001;24: 3 345–353. .
34. Fethi, K. Exfoliation properties of acid-activated montmorillonites and their resulting organoclays. Langmuir. 2009;25:724–730. .
35. Brunauer, S, Emmett, PH, Teller, E. Adsorption of gases in multimolecular layers. J Am Chem Soc. 1938;60:309–319. .
36. Everett, DH, Parfit, GD, Sing, KSW, Wilson, RJ. The SCI/IUPAC/NPL project on surface area standards. J Appl Chem Biotechnol. 1974;24:199–219. .
37. Allen, T. Particle size measurement. Surface area and pore size determination, vol 2. 5 London: Chapman & Hall; 1997.
38. Freeman, ES, Carrroll, B. The application of thermoanalytical techniques to reaction kinetics. The thermogravimetric evaluation of the kinetics of the decomposition of calcium oxalate monohydrate. J Phys Chem. 1958;62:394 .
39. Wu, P, Ming, C, Li, R. Microstructural characteristic of montmorillonite and its thermal treatment products. J Wuhan Univ Technol. 2005;20: 1 83–88. .
40. Bayram, H, Önal, M, Yilmaz, H, Sarikaya, Y. Thermal analysis of a white calcium bentonite. J Therm Anal Calorim. 2010;101: 3 873–879. .
41. Heller-Kallai, L. Thermally modified clay minerals Bergaya, F, Theng, BKG, Lagaly, G, eds. Handbook of clay science—developments in clay science. 1 Amsterdam: Elsevier; 2006 289–308. .
42. Önal, M, Sarikaya, Y, Alemdaroglu, T. The effect of acid activation on some physicochemical properties of a bentonite. Turk J Chem. 2002;26:409–416.
43. Volzone, C. Retention of pollutant gases: comparison between clay minerals and their modified products. Appl Clay Sci. 2007;36:191–196. .
44. Yildiz, N, Calimli, A. Alteration of three Turkish bentonite by treatment with Na2CO3 and H2SO4. Turk J Chem. 2002;26:393–401.
45. Kooli, F, Magusin, PCMM. Adsorption of cetyltrimethylammonium ions on an acid-activated smectite and their thermal stability. Clay Miner. 2005;40: 2 233–243. .
46. Al-Zahrani, AA, Al-Shahrani, SS, Al-Tawail, YA. Study on the activation of Saudi Natural Bentonite, part I: Investigation of the conditions that give the best results and kinetics of the sulphuric acid activation process. J King Saud Univ Eng Sci. 2001;13: 1 57–72.
47. Gregg, SJ, Sing, KSW. Adsorption, surface area and porosity. 2 New York: Academic Press; 1982.
48. Temuujin, J, Okada, K, MacKenzie, KJD. Preparation of porous silica from vermiculite by selective leaching. Appl Clay Sci. 2003;22: 4 187–195. .
49. Salem, A, Karimi, L. Physico-chemical variation in bentonite by sulphuric acid activation. Korean J Chem Eng. 2009;26: 4 980–984. .
50. Bray, HJ, Redfern, SAT. Kinetics of dehydration of Ca–montmorillonite. Phys Chem Miner. 1999;26: 7 591–600. .
51. Önal, M, Sarikaya, Y. Thermal behaviour of a bentonite. J Therm Anal Calorim. 2007;90: 1 167–172. .