Thermal behaviour of newly synthesized niobium(V) aryloxides of composition [NbCl5−n(OC6H4CH(CH3)2-4)n] (where n = 1 → 5) synthesized by the reactions of niobium pentachloride with 4-isopropylphenol in predetermined molar ratios in carbon tetrachloride has been studied by thermogravimetric (TG) and differential thermal analysis (DTA) techniques. The results showed that thermal decomposition of complex of composition [NbCl4(OC6H4CH(CH3)2-4)] resulted in the formation of NbOCl3 as the ultimate decompositional product while all other complexes yielded Nb2O5 as the final product of thermal decomposition. From the mathematical analysis of TG data, the kinetic and thermodynamic parameters viz. energy of activation, frequency factor, entropy of activation, etc. have been evaluated using Coats–Redfern equation.
1. Ziolek, M. Niobium-containing catalysts—the state of the art. Catal Today. 2003;78:47–64. .
2. Tanabe, K. Catalytic application of niobium compounds. Catal Today. 2003;78:65–77. .
3. Tanabe, K, Okazaki, S. Various reactions catalysed by niobium compounds and materials. Appl Catal A. 1995;133:191–218. .
4. Wachs, IE, Jehng, JM, Deo, G, Hu, H, Arora, N. Redox properties of niobium oxide catalysts. Catal Today. 1996;28:199–205. .
5. Andrade, CKZ, Rocha, R. Recent applications of niobium catalysts in organic synthesis. Rev Org Chem. 2006;3:271–280. .
6. Nowak, I, Ziolek, M. Niobium compounds: preparation, characterization and application in heterogeneous catalysis. Chem Rev. 1999;99:3603–3624. .
7. Tanabe, K. Application of niobium oxides as catalysts. Catal Today. 1990;8:1–11. .
8. Ichikuni, N, Shirai, M, Iwasawa, Y. Surface structures and catalytic properties of supported niobium oxides. Catal Today. 1996;28:49–58. .
9. Mal, NK, Bhaumik, A, Kumar, P, Fujiwara, M, Matsukata, M. Novel organic–inorganic hybrid and organic-free mesoporous niobium oxophosphate synthesized in the presence of an anionic surfactant. Microporous Mesoporous Mater. 2006;93:40–45. .
10. Nowak, I, Jaroniec, M. Three-dimentional cubic mesoporous molecular sieves of FDU-1 containing niobium: dependence of niobium source on structural properties. Langmuir. 2005;21:755–760. .
11. McKarns, PJ, Heeg, MJ, Winter, CH. Synthesis, structure, hydrolysis and film deposition studies of complexes of the formula [NbCl4(S2R2)2][NbCl6]. Inorg Chem. 1998;37:4743–4747. .
12. Filipek, E, Piz, M. The reactivity of SbVO5 with T-Nb2O5 in solid state in air. J Therm Anal Calorim. 2010;101:447–453. .
13. Tabero, P. The formation and properties of new Al8V10W16O85 and Fe8−xAlxV10W16O85 phases with the M-Nb2O5 structure. J Therm Anal Calorim. 2010;101:561–566. .
14. Czeppe, T. Mechanism and kinetics of nano-crystallization of the thermally stable NiNb(ZrTi)Al metallic glasses. J Therm Anal Calorim. 2010;101:615–622. .
15. Mansurova, AN, Gulyaeva, RI, Chumarev, VM, Marevich, VP. Thermochemical properties of MnNb2O6. J Therm Anal Calorim. 2010;101:45–47. .
16. Ivanov, MG, Shmakov, AN, Drebushchak, VA, Podyacheva, OY. Two mechanisms of thermal expansion in perovskite SrCo0.6Fe0.2Nb0.2O3−z. J Therm Anal Calorim. 2010;100:79–82. .
17. Nyman, M, Rodriguez, MA, Alam, TM, Anderson, TM, Ambrosini, A. Aqueous synthesis and structural comparison of rare earth niobates and tantalates: (La, K)2Nb2O7−x(OH)2 and Ln2Ta2O7(OH)2 (Ln=La-Sm). Chem Mater. 2009;21:2201–2208. .
18. Redshaw, C, Homden, DM, Rowan, MA, Elsegood, MRJ. Niobium-based ethylene polymerization procatalysts bearing di- and triphenolate ligands. Inorg Chim Acta. 2005;358:4067–4074. .
19. Turevskaya, EP, Turova, NY, Korolev, AV, Yanovsky, AI, Struchkov, YT. Bimetallic alkoxides of niobium. Polyhedron. 1995;14:1531–1542. .
20. Boulmaaz, S, Papiernik, R, Hubert-Pfalzgraf, LG, Septe, B, Vaissermann, J. Chemical routes to oxides: alkoxide vs. alkoxide-acetate routes: synthesis, characterization, reactivity and polycondensation of MNb2(OAc)2(OPri)10 (M=Mg, Cd, Pb) species. J Mater Chem. 1997;7:2053–2061. .
21. Sobota, P, Utko, J, Szafert, S. Synthesis and molecular structures of the magnesium and aluminium adducts of a niobium-oxo complex. X-ray crystal structures of [{NbOCl4(THF)}2Mg(THF)4] and of [{NbOCl4(THF)}2AlCl(THF)3]. Inorg Chem. 1997;36:2227–2229. .
22. Goel, SC, Hollingsworth, JA, Beatty, AM, Robinson, KD, Buhro, WE. Preparation of volatile molecular lithium-niobium alkoxides. Crystal structures of [Nb(μ-OCH2SiMe3)(OCH2SiMe3)4]2 and [LiNb(μ3-OCH2SiMe3)-(μ2-OCH2SiMe3)2(OCH2SiMe3)]2. Polyhedron. 1998;17:781–790. .
23. Sharma, N, Sharma, M, Kumari, M, Chaudhry, SC. Synthesis, characterization and thermal studies of niobium(v) complexes of 2-tert-butylphenol. Polish J Chem. 2009;83:1265–1276.
24. Sharma, N, Sharma, M, Kumari, M, Chaudhry, SC. Synthesis, characterization and reactivity of niobium(V)-2-tert-butylphenoxides. Polish J Chem. 2009;83:1565–1573.
25. Sharma, N, Sharma, M, Bhatt, SS, Chaudhry, SC. Synthesis, characterization and acceptor behaviour of dichlorotris(2-t-butylphenoxo)niobium(V). J Coord Chem. 2010;63:680–687. .
26. Sharma N , Sharma M. Synthesis, spectroscopic studies and reactivity of monochlorotetrakis(2-/4-isopropylphenoxo)niobium(V) complexes. J Coord Chem. (in press).
27. Coats, AW, Redfern, JP. Kinetic parameters from thermogravimetric data. Nature. 1964;201:68–69. .
28. Coats, AW, Redfern, JP. Kinetic parameters from thermogravimetric data II. J Polym Sci Polym Lett. 1965;3:917–920. .
29. Zsako, J, Varhelyl, Cs, Kekedy, E. Kinetics and mechanism of substitution reactions of complexes—III: thermal decomposition of complexes of the type [Co(DH)2Am2]X. J Inorg Nucl Chem. 1966;28:2637–2646. .
30. Khadikar, PV, Ali, SM, Heda, B. Kinetics of thermal dehydration of some bis-(4-aminosalicylato)-diaquo complexes of transition metal ions. Thermochim Acta. 1984;82:253–261. .
31. Frost, AA, Pearson, RG. Kinetic and mechanism. Wiley: New York; 1961.
32. Sawhney, SS, Bansal, AK. Kinetics of the non-isothermal decomposition of some metal derivatives of 8-quinolinol and its dihalo derivatives from DTG/DTA curves. Thermochim Acta. 1983;66:347–350. .
33. Aravindakshan, KK, Muraleedharan, K. Thermal decomposition kinetics of polymeric complexes of nickel(II), zinc(II) and cadmium(II) with N,N′-bis(dithiocarboxy)piperazine. Thermochim Acta. 1989;140:325–335. .