Authors:
,
Neeraj Sharma Department of Chemistry, Himachal Pradesh University, Summer Hill, Shimla 171005, India

Search for other papers by Neeraj Sharma in
Current site
Google Scholar
PubMed
Close
, and
Amit Pathania Department of Chemistry, Himachal Pradesh University, Summer Hill, Shimla 171005, India

Search for other papers by Amit Pathania in
Current site
Google Scholar
PubMed
Close
Mala Sharma Department of Chemistry, Himachal Pradesh University, Summer Hill, Shimla 171005, India

Search for other papers by Mala Sharma in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Thermal behaviour of newly synthesized niobium(V) aryloxides of composition [NbCl5−n(OC6H4CH(CH3)2-4)n] (where n = 1 → 5) synthesized by the reactions of niobium pentachloride with 4-isopropylphenol in predetermined molar ratios in carbon tetrachloride has been studied by thermogravimetric (TG) and differential thermal analysis (DTA) techniques. The results showed that thermal decomposition of complex of composition [NbCl4(OC6H4CH(CH3)2-4)] resulted in the formation of NbOCl3 as the ultimate decompositional product while all other complexes yielded Nb2O5 as the final product of thermal decomposition. From the mathematical analysis of TG data, the kinetic and thermodynamic parameters viz. energy of activation, frequency factor, entropy of activation, etc. have been evaluated using Coats–Redfern equation.

  • 1. Ziolek, M. Niobium-containing catalysts—the state of the art. Catal Today. 2003;78:4764. .

  • 2. Tanabe, K. Catalytic application of niobium compounds. Catal Today. 2003;78:6577. .

  • 3. Tanabe, K, Okazaki, S. Various reactions catalysed by niobium compounds and materials. Appl Catal A. 1995;133:191218. .

  • 4. Wachs, IE, Jehng, JM, Deo, G, Hu, H, Arora, N. Redox properties of niobium oxide catalysts. Catal Today. 1996;28:199205. .

  • 5. Andrade, CKZ, Rocha, R. Recent applications of niobium catalysts in organic synthesis. Rev Org Chem. 2006;3:271280. .

  • 6. Nowak, I, Ziolek, M. Niobium compounds: preparation, characterization and application in heterogeneous catalysis. Chem Rev. 1999;99:36033624. .

  • 7. Tanabe, K. Application of niobium oxides as catalysts. Catal Today. 1990;8:111. .

  • 8. Ichikuni, N, Shirai, M, Iwasawa, Y. Surface structures and catalytic properties of supported niobium oxides. Catal Today. 1996;28:4958. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9. Mal, NK, Bhaumik, A, Kumar, P, Fujiwara, M, Matsukata, M. Novel organic–inorganic hybrid and organic-free mesoporous niobium oxophosphate synthesized in the presence of an anionic surfactant. Microporous Mesoporous Mater. 2006;93:4045. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10. Nowak, I, Jaroniec, M. Three-dimentional cubic mesoporous molecular sieves of FDU-1 containing niobium: dependence of niobium source on structural properties. Langmuir. 2005;21:755760. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11. McKarns, PJ, Heeg, MJ, Winter, CH. Synthesis, structure, hydrolysis and film deposition studies of complexes of the formula [NbCl4(S2R2)2][NbCl6]. Inorg Chem. 1998;37:47434747. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12. Filipek, E, Piz, M. The reactivity of SbVO5 with T-Nb2O5 in solid state in air. J Therm Anal Calorim. 2010;101:447453. .

  • 13. Tabero, P. The formation and properties of new Al8V10W16O85 and Fe8−xAlxV10W16O85 phases with the M-Nb2O5 structure. J Therm Anal Calorim. 2010;101:561566. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14. Czeppe, T. Mechanism and kinetics of nano-crystallization of the thermally stable NiNb(ZrTi)Al metallic glasses. J Therm Anal Calorim. 2010;101:615622. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15. Mansurova, AN, Gulyaeva, RI, Chumarev, VM, Marevich, VP. Thermochemical properties of MnNb2O6. J Therm Anal Calorim. 2010;101:4547. .

  • 16. Ivanov, MG, Shmakov, AN, Drebushchak, VA, Podyacheva, OY. Two mechanisms of thermal expansion in perovskite SrCo0.6Fe0.2Nb0.2O3−z. J Therm Anal Calorim. 2010;100:7982. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17. Nyman, M, Rodriguez, MA, Alam, TM, Anderson, TM, Ambrosini, A. Aqueous synthesis and structural comparison of rare earth niobates and tantalates: (La, K)2Nb2O7−x(OH)2 and Ln2Ta2O7(OH)2 (Ln=La-Sm). Chem Mater. 2009;21:22012208. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18. Redshaw, C, Homden, DM, Rowan, MA, Elsegood, MRJ. Niobium-based ethylene polymerization procatalysts bearing di- and triphenolate ligands. Inorg Chim Acta. 2005;358:40674074. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19. Turevskaya, EP, Turova, NY, Korolev, AV, Yanovsky, AI, Struchkov, YT. Bimetallic alkoxides of niobium. Polyhedron. 1995;14:15311542. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20. Boulmaaz, S, Papiernik, R, Hubert-Pfalzgraf, LG, Septe, B, Vaissermann, J. Chemical routes to oxides: alkoxide vs. alkoxide-acetate routes: synthesis, characterization, reactivity and polycondensation of MNb2(OAc)2(OPri)10 (M=Mg, Cd, Pb) species. J Mater Chem. 1997;7:20532061. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21. Sobota, P, Utko, J, Szafert, S. Synthesis and molecular structures of the magnesium and aluminium adducts of a niobium-oxo complex. X-ray crystal structures of [{NbOCl4(THF)}2Mg(THF)4] and of [{NbOCl4(THF)}2AlCl(THF)3]. Inorg Chem. 1997;36:22272229. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22. Goel, SC, Hollingsworth, JA, Beatty, AM, Robinson, KD, Buhro, WE. Preparation of volatile molecular lithium-niobium alkoxides. Crystal structures of [Nb(μ-OCH2SiMe3)(OCH2SiMe3)4]2 and [LiNb(μ3-OCH2SiMe3)-(μ2-OCH2SiMe3)2(OCH2SiMe3)]2. Polyhedron. 1998;17:781790. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23. Sharma, N, Sharma, M, Kumari, M, Chaudhry, SC. Synthesis, characterization and thermal studies of niobium(v) complexes of 2-tert-butylphenol. Polish J Chem. 2009;83:12651276.

    • Search Google Scholar
    • Export Citation
  • 24. Sharma, N, Sharma, M, Kumari, M, Chaudhry, SC. Synthesis, characterization and reactivity of niobium(V)-2-tert-butylphenoxides. Polish J Chem. 2009;83:15651573.

    • Search Google Scholar
    • Export Citation
  • 25. Sharma, N, Sharma, M, Bhatt, SS, Chaudhry, SC. Synthesis, characterization and acceptor behaviour of dichlorotris(2-t-butylphenoxo)niobium(V). J Coord Chem. 2010;63:680687. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26. Sharma N , Sharma M. Synthesis, spectroscopic studies and reactivity of monochlorotetrakis(2-/4-isopropylphenoxo)niobium(V) complexes. J Coord Chem. (in press).

    • Search Google Scholar
    • Export Citation
  • 27. Coats, AW, Redfern, JP. Kinetic parameters from thermogravimetric data. Nature. 1964;201:6869. .

  • 28. Coats, AW, Redfern, JP. Kinetic parameters from thermogravimetric data II. J Polym Sci Polym Lett. 1965;3:917920. .

  • 29. Zsako, J, Varhelyl, Cs, Kekedy, E. Kinetics and mechanism of substitution reactions of complexes—III: thermal decomposition of complexes of the type [Co(DH)2Am2]X. J Inorg Nucl Chem. 1966;28:26372646. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30. Khadikar, PV, Ali, SM, Heda, B. Kinetics of thermal dehydration of some bis-(4-aminosalicylato)-diaquo complexes of transition metal ions. Thermochim Acta. 1984;82:253261. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31. Frost, AA, Pearson, RG. Kinetic and mechanism. Wiley: New York; 1961.

  • 32. Sawhney, SS, Bansal, AK. Kinetics of the non-isothermal decomposition of some metal derivatives of 8-quinolinol and its dihalo derivatives from DTG/DTA curves. Thermochim Acta. 1983;66:347350. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33. Aravindakshan, KK, Muraleedharan, K. Thermal decomposition kinetics of polymeric complexes of nickel(II), zinc(II) and cadmium(II) with N,N′-bis(dithiocarboxy)piperazine. Thermochim Acta. 1989;140:325335. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
1
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Apr 2023 2 0 0
May 2023 0 0 0
Jun 2023 2 0 0
Jul 2023 2 0 0
Aug 2023 3 0 0
Sep 2023 3 0 0
Oct 2023 1 0 0