View More View Less
  • 1 Condensed Matter Physics Laboratory, Applied Physics Department, Faculty of Technology & Engineering, The M. S. University of Baroda, Vadodara 390001, India
Restricted access

Abstract

Metallic glasses have received considerable attention in comparison to normal metallic materials due to their superior physical and mechanical properties. These systems possess large under cooled region, ΔTT = TxTg where, Tx is crystallization temperature and Tg is glass transition temperature) and hence increased thermal stability against crystallization. Due to this, the study of their crystallization kinetics is important and interesting. It is interesting because of the fact that, crystallization becomes multi-step process due to several components present in these systems. In this paper, we report the experimental investigations of crystallization of Zr52Cu18Ni14Al10Ti6 glassy alloy system, which is among the best non-beryllium containing glasses, using differential scanning calorimetry (DSC). The crystallization, as expected, consists of multiple steps. Interestingly, the peak heights of these steps vary with heating rate. At lower heating rates, first peak is most prominent and subsequently diminishes with increase in heating rate with last peak prominence visible at highest heating rate. Both, iso-kinetic and iso-conversional methods of analysis of kinetics of crystallization have been used to evaluate the activation energy and Avrami exponents and consistent results are obtained.

  • 1. Glade, SC, Busch, R, Lee, DS, Johnson, WL, Wunderlich, RK, Fecht, HJ. Thermodynamics of Cu47Ti34Zr11Ni8, Zr52.5Cu17.9Ni14.6Al10Ti5 and Zr57Cu15.4Ni12.6Al10Nb5 bulk metallic glass forming alloys. J Appl Phys. 2000;87:72427248. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2. Ligero, RA, Vazquez, J, Villares, P, Jimenez-Garay, R. Crystalllization kinetics in the As–Se–Te system. Thermochim Acta. 1990;162:427434. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3. Moharram, AH, El-Oyoun, MA, Abu-Sehly, AA. Calorimetric study of the chalcogenide Se72.5Te20Sb7.5 glass. J Phys D Appl Phys. 2001;34:25412546. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4. Rysava, N, Spasov, T, Tichy, L. Isothermal DSC methods for evaluation of the kinetics of crystallization in the Ge–Sb–S glassy system. J Therm Anal. 1987;32:10151021. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5. Giridhar, A, Mahadevan, S. Studies on the As–Sb–Se glass system. J Non Cryst Solids. 1982;51:305315. .

  • 6. Afify, S. Differential scanning calorimetric study of chalcogenide glass Se0.7Te0.3. J Non Cryst Solids. 1991;128:279284. .

  • 7. Lad, KN, Savalia, RT, Pratap, A, Dey, GK, Banerjee, S. Isokinetic and isoconversional study of crystallization kinetics of a Zr-based metallic glass. Thermochim Acta. 2008;473:7480. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8. Kolmogorov, AN. On the statistical theory of the crystallization of metals. Bull Acad Sci USSR Phys Ser. 1937;3:555.

  • 9. Johnson, WA, Mehl, PA. Reaction kinetics of nucleation and growth. Trans Am Inst Min Metall Eng. 1939;135:416432.

  • 10. Avrami, M. Kinetics of phase change. I General theory. J Chem Phys. 1939;7:11031112. .

  • 11. Avrami, M. Kinetics of phase change. II Transformations-time relations for random distribution of nuclei. J Chem Phys. 1940;8:212224. .

  • 12. Avrami, M. Granulation, phase change, and microstructure kinetics of phase change. III. J Chem Phys. 1941;9:177184. .

  • 13. Starink, MJ. On the meaning of the impingement parameter in kinetic equations for nucleation and growth reactions. J Mater Sci. 2001;36:44334441. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14. Starink, MJ. The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim Acta. 2003;404:163176. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15. Kissinger, HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:17021706. .

  • 16. Akahira, T, Sunose, T. Joint convention of four electrical institutes. Res Report Chiba Inst Technol. 1971;16:2231.

  • 17. Coats, AW, Redfern, JP. Kinetic parameters from thermogravimetric data. Nature. 1964;201:6869. .

  • 18. Augis, JA, Bennett, JE. Calculation of the Avrami parameters for heterogeneous solid state reactions using a modification of the Kissinger method. J Therm Anal. 1978;13:283292. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19. Boswell, PG. On the calculation of activation energies using modified Kissinger method. J Therm Anal. 1980;18:353358. .

  • 20. Ozawa, T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:18811886. .

  • 21. Flynn, JH, Wall, LA. General treatment of the thermogravimetry of polymers. J Res Natl Bur Stand A Phys Chem. 1966;70A:487523.

  • 22. Doyle, CD. Kinetic analysis of thermogravimetric data. J Appl Polym Sci. 1961;5:285292. .

  • 23. Doyle, CD. Estimating isothermal life from thermogravimetric data. J Appl Polym Sci. 1962;6:642693.

  • 24. Doyle, CD. Series approximations to the equation of thermogravimetric data. Nature. 1965;207:290291. .

  • 25. Friedman, HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to phenolic plastic. J Polym Sci. 1964;C6:183195.

    • Search Google Scholar
    • Export Citation
  • 26. Gao, YQ, Wang, W. On the activation energy of crystallization in metallic glasses. J Non Cryst Solids. 1986;81:129134. .

  • 27. Matusita, K, Sakka, S. Kinetic study of crystallization of glass by differential scanning calorimetry. Phys Chem Glasses. 1979;20:8184.

    • Search Google Scholar
    • Export Citation
  • 28. Matusita, K, Sakka, S. Kinetic study on crystallization of glass by differential thermal analysis—criterion on application of Kissinger plot. J Non Cryst Solids. 1980;38–39:741746. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29. Dhurandhar, H, Patel, AT, Shanker Rao, TL, Lad, KN, Pratap, A. Kinetics of crystalllization of co-based multi-component amorphous alloy. J ASTM Int. 2010;7:115.

    • Search Google Scholar
    • Export Citation
  • 30. Sunol, JJ, Bonastre, J. Crystallization kinetics of metallic glasses. J Therm Anal Calorim. 2010;102:447450. .

  • 31. Munteanu, G, Segal, E. Sestak–Berggren function in temperature-programmed reduction. J Therm Anal Calorim. 2010;101:8995. .

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Oct 2020 0 0 0
Nov 2020 1 0 0
Dec 2020 5 0 0
Jan 2021 5 0 0
Feb 2021 1 0 0
Mar 2021 1 0 0
Apr 2021 0 1 1