View More View Less
  • 1 Department of Physics, Patna Women’s College, Patna University, Patna 800 001, India
  • | 2 Vidya Vihar Institute of Technology, Purnea 854 301, India
  • | 3 Department of Physics, Patna University, Patna, Bihar, 800 005, India
  • | 4 University Department of Chemistry, Magadh University, Bodh Gaya 824 234, India
Restricted access

Abstract

Chromite Spinel materials were synthesized in this study by the citrate precursor method using four divalent cations (Ni2+, Co2+, Zn2+, and Cu2+). Citrate precursors consisting of mixed chromium citrates were first subjected to a thermogravimetric (TG) analysis for determining optimum temperatures for annealing. TG of coprecipitated chromium(III) citrate–zinc citrate gel has been carried out separately in N2 and O2 atmospheres. In both the cases, dehydration is followed by a four-step decomposition. The TG data were subjected to kinetic/mechanistic analysis, and the values of activation energy and Arrhenius factor were approximated. TG curves of various powders which were obtained on annealing at the two temperatures did exhibit thermal instability when carried out in N2 atmosphere. A large coercivity of 2701.01 Oe was observed for NiCr2O4 at 650 °C. On the basis of the results, 450 °C has been chosen for annealing treatment of the four gels. The samples were accordingly annealed at two different temperatures (450 and 650 °C) in a muffle furnace for 1 h in each case. The annealed powders were characterized using X-ray diffraction (XRD), SEM, and vibrating sample magnetometer (VSM). The XRD patterns show that annealing of CuCr2O4, NiCr2O4, and CoCr2O4 at 450 °C yields very small crystallites with poor Bragg reflections, although ZnCr2O4 samples show better peaks in XRD data. Annealing at 650 °C resulted in particle size range of 8–89 nm in the four cases. In the case of ZnCr2O4, the particle size was 8 nm.

  • 1. Marinho, EP, Souza, AG, de Melo, DS, Santos, IMG, Melo, DMA, da Silva, WJ. Lanthanum chromites partially substituted by calcium, strontium and barium synthesized by urea combustion. J Therm Anal Calorim. 2007;87:801804. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2. Tagliaferro, FS, Fernandes, EAN, Bacchi, MA, Campos, EA, Dutra, RCL, Diniz, MF. INAA for validation of chromium and copper determination in copper chromite by infrared spectrometry. J Radioanal Nucl Chem. 2006;269:403406. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3. Chen, XH, Zhang, HT, Wang, CH, Luo, XG, Li, PH. Effect of particle size on magnetic properties of zinc chromite synthesized by sol-gel method. Appl Phys Lett. 2002;81:44194421. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4. Hagemann, IS, Huang, Q, Gao, XPA, Ramirez, AP, Cava, RJ. Geometric magnetic frustration in Ba2Sn2Ga3ZnCr7O22: a two dimensional spinel based Kagome lattice. Phys Rev Lett. 2001;86:894897. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5. Schwickardi, M, Johann, T, Schmidt, W, Schuth, F. High surface area oxides obtained by an activated carbon route. Chem Mater. 2002;14:39133919. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6. Barreca, D, Comini, E, Ferrucci, AP, Gasparroto, A, Maccato, C, Maragno, C, Sberveglieri, G, Tondello, E. First example of ZnO–TiO2 nanocomposites by vapor deposition: structure, morphology, composition and gas sensing performances. Chem Mater. 2007;19:56425649. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7. West, AR. Solid state chemistry and its applications. New Delhi: Wiley India; 2007 617.

  • 8. Bandopadhay AK . Nanomaterials, Delhi: New Age International Publishers; 2009. p 172.

  • 9. Chikazimi, S. Physics of ferromagnetism. 2 New York: Oxford University Press; 1997 206207.

  • 10. Verway, EJW, Heilmann, EL. Cation arrangement in spinels. J Chem Phys. 1947;15: 4 174180. .

  • 11. Verma, RK, Verma, L, Chandra, M. Thermoanalytical studies on the non-isothermal dehydration and decomposition of dl-lactates of a series of transition metals. Indian J Chem. 2003;42A:29822987.

    • Search Google Scholar
    • Export Citation
  • 12. Bhattacharjee, NC, Kumar, M, Kumar, S, Verma, RK. Kinetic and mechanistic studies on non-isothermal decomposition of potassium dioxalatocuprate(II) dihydrate. J Indian Chem Soc. 1998;75: 5 317318.

    • Search Google Scholar
    • Export Citation
  • 13. Verma, RK, Verma, L, Chandra, M, Bhushan, A. Non-isothermal dehydration and decomposition of dl-lactates of transition metals and alkaline earth metals: a comparative study. J Therm Anal Calorim. 2005;80:351354. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14. Tanaka, H, Brown, ME. The theory and practice of thermoanalytical kinetics of solid state reactions. J Therm Anal Calorim. 2005;80:795797. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15. Brown, ME, Gallagher, PK. Introduction to recent advances, techniques and applications of thermal analysis and calorimetry Brown, ME, Gallagher, PK, eds. Hand book of thermal analysis and calorimetry. Amsterdam: Elsevier; 2008 112.

    • Search Google Scholar
    • Export Citation
  • 16. Verma, RK, Verma, L, Chandra, M, Verma, BP. Kinetic parameters of thermal dehydration and decomposition from thermoanalytical curves of zinc dl-lactate. J Indian Chem Soc. 1998;75:162164.

    • Search Google Scholar
    • Export Citation
  • 17. Verma, BP, Verma, RK, Chandra, M, Pandey, S, Mallick, AK, Verma, L. A study of non-isothermal decomposition of calcium dl-lactate pentahydrate. Asian J Chem. 1994;6:606612.

    • Search Google Scholar
    • Export Citation
  • 18. Verma, RK, Verma, L, Ranjan, M, Verma, BP, Mojumdar, SC. Thermal analysis of 2-oxocyclopentanedithiocarboxylato complexes of iron(III), copper(II) and zinc(II) containing pyridine or morpholine as the second ligand. J Therm Anal Calorim. 2008;94:2731. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19. Verma, RK, Verma, L, Bhushan, A, Verma, BP. Thermal decomposition of complexes of cadmium(II) and mercury(II) with triphenylphosphanes. J Therm Anal Calorim. 2007;90:725729. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20. Verma, RK, Mishra, BK, Satpathy, KC, Mahapatra, A. Synthesis and characterization of mono and homo-dinuclear, cobalt(II), nickel(II) and copper(II) complexes of the schiff base derived from 3-formylsalicyclic acid and hydroxylamine hydrochloride. Asian J Chem. 1997;9: 3 365371.

    • Search Google Scholar
    • Export Citation
  • 21. Kumar, M, Verma, RK, Verma, L, Bhattacharjee, NC, Kumar, S, Verma, BP. Thermal decomposition of potassium trioxalato chromate(III) trihydrate: a kinetic and mechanistic study. Asian J Chem. 1996;8: 3 543546.

    • Search Google Scholar
    • Export Citation
  • 22. Agrawal, HL, Mishra, A, Ambasta, RK, Verma, L, Verma, RK, Verma, BP. Kinetic parameters of thermolysis of complexes of rhodium(III), palladium(II) and platinum(II) with substituted morpholines from their non-isothermal thermogravimetric data. Asian J Chem. 1994;6:130134.

    • Search Google Scholar
    • Export Citation
  • 23. Marinescu, C, Sofronia, A, Rusti, C, Piticescu, R, Badilita, V, Vasile, E, Baies, R, Tanasescu, S. DSC investigation of nanocrystalline TiO2 powder. J Therm Anal Calorim. 2011;103:4957. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24. Jesenac, V, Turcaniova, L, Tkacova, K. Kinetic analysis of thermal decomposition of magnesite: influence of generated defects and their annealing. J Therm Anal Calorim. 1997;48:93106. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25. Cullity, BD. Elements of X-ray diffraction. New York: Wiley; 1978 101.

  • 26. Samtani, M, Dollimore, D, Alexander, KS. Comparison of dolomite decomposition kinetics with related carbonates and the effect of procedural variables on its kinetic parameters. Thermochim Acta. 2002;392–393:135145. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27. Jalowiecki, L, Wrobel, G, Daage, M, Bonnelle, JP. Structure of catalytic sites of hydrogen treated copper containing spinel catalysts. J Catal. 1987;107:375392. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28. Liang, C, Ma, Z, Ding, L, Qiu, J. Template preparation of highly active and selective Cu–Cr catalysts with high surface area for glycerol hydrogenolysis. Catal Lett. 2009;130:169176. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29. Nakoumbou, C, Villieras, F, Barres, O, Bihannic, J, Pelletier, M, Razafitianamaharavo, A, Metang, V, Yonta, NC, Njopwouo, D, Yvon, J. Physicochemical properties of talc ores from Pout-Kelle and Memel deposits. Clay Miner. 2008;43:317337. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30. Comino, G, Gervasini, A, Ragaini, V, Ismagilov, ZR. Methane combustion over copper chromite catalysts. Catal Lett. 1997;48:3946. .

  • 31. Fouad, NE. Formation of Cr(II) species in the H2/CrO3 system parameter control. J Therm Anal Calorim. 2000;60:541547. .

  • 32. Varma, RC, Varma, K, Verma, RK, Bhattacharjee, NC. Synthesis and characterization of copper(II) complexes of 4-amino-3-hydrazino-5-mercapto-1,2,4-triazole. J Indian Chem Soc. 1992;69:577578.

    • Search Google Scholar
    • Export Citation
  • 33. Ziemniak, SE, Gaddipati, AR, Sander, PC. Immiscibility in the NiFe2O4–NiCr2O4 spinel binary. J Phys Chem Solids. 2005;66:11121121. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34. Kehl WL . US Patent # 3595810. 1971 (July 27).