The thermal degradation of graft copolymers of both polysaccharides (guar gum and xanthan gum) showed gradual decrease in mass loss. Pure guar gum degraded about 95% but pure xanthan gum degraded about 76% up to 1173.15 K, while graft copolymers of guar gum and xanthan gum degraded only 65–76% up to 1173.15 K. Acrylic acid grafted guar gum and xanthan gum showing two-step degradation with formation of anhydride and ketonic linkage during heating, same pattern of degradation was found for xanthan gum-g-methacrylic acid. Guar gum-g-acrylamide degraded in single step and xanthan gum-g-acrylamide started to degrade above 448.15 K and it is a two-stage process and imparts thermal stability due to the formation of imide linkage with evolution NH3. Guar gum-g-methacrylamide degraded in three steps due to the loss of NH3 and CO2 successively. 4-vinyl pyridine grafted both polysaccharides show single step degradation due to loss of pyridine pendent. N-vinyl formamide grafted guar gum and xanthan gum started to degrade at about 427.15 K, showed two-stage degradation process with the evolution of CO and NH3 molecules while guar gum-g-(N-vinyl-2-pyrrolidone) degraded into two steps by the loss of pyrrolidone nucleus. Gum-g-2-acrylamido-2-methyl-1-propane sulfonic acid (AMPS) showed two-step degradation processes in two successive degradation steps, while xanthan gum-g-AMPS has started degradation at about 427.15 K and completed in five degradation steps. Overall, it was found that the grafted polysaccharides are thermally more stable than pure polysaccharides.
1. Seaman, JK. Hand book of water soluble gums and resins. New York: McGraw Hill; 1980 96–101.
2. Whistler, RL, Smart, CL. Polysaccharide chemistry. New York: Academic Press Inc.; 1953 5296–5331.
3. Boggs AD . Master’s Thesis, Purdue University, Lafayette; 1949.
4. Ahmad, ZF, Whistler, RL. The structure of guaran. J Am Chem Soc. 1950;72:2524–2525. .
5. Rogovin, SP, Anderson, RG, Cadmus, MC. Production of polysaccharide with Xanthomonas campestris. J Biochem Microb Technol Eng. 1961;3: 1 51–63. .
6. Jeanes, A, Pittsley, JE, Senti, FR. Polysaccharide B-1459: a new hydrocolloid polyelectrolyte produced from glucose by bacterial fermentation. J Appl Polym Sci. 1961;5:519–526. .
7. Melton, LD, Mindt, L, Rees, DA. Covalent structure of the extracellular polysaccharide from Xanthomonas campestris: evidence from partial hydrolysis studies. Carbohydr Res. 1976;46: 2 245–257. .
8. Holtzwarth, G. Conformation of the extracellular polysaccharide of Xanthomonas campestris. Biochemistry. 1976;15: 19 4333–4339. .
9. Janson, PE, Kenne, L, Lindberg, B. Structure of the extracellular polysaccharide from Xanthomonas campestris. Carbohydr Res. 1975;45: 1 275–282. .
10. Sohn, JI, Kim, CA, Choi, HJ, Jhon, MS. Drag-reduction effectiveness of xanthan gum in a rotating disk apparatus. Carbohydr Polym. 2001;45: 1 61–68. .
11. Kierulf, C, Sutherland, IW. Thermal stability of xanthan preparations. Carbohydr Polym. 1988;9: 3 185–194. .
12. Lund, T, Lecourtier, J, Muller, G. Properties of xanthan solutions after long-term heat treatment at 90°C. Polym Degrad Stab. 1990;27: 2 211–225. .
13. Noble, O, Tarvel, FR. Rheological properties of galactomannan-based gels. Part 2—ion cross-linked galactomannan gels. Carbohydr Polym. 1990;12: 3 279–293. .
14. Adhikari, P, Singh, RP. Synthesis, characterization and flocculation characteristics of hydrolyzed and unhydrolyzed polyacrylamide grafted xanthan gum. J Appl Polym Sci. 2004;94: 4 1411–1419. .
15. Kojima, K, Takahashi, K, Motoda, S, Yoshikuni, M. Tributylborane-initiated graft copolymerization onto xanthan gum and adsorption of heavy metal ions by graft copolymers. Kogakubu Kenkyu Hokoku (Chiba Daigaku). 1985;36: 2 83–88.
16. Cottrell, IW, Shim, JL, Best, JS, Empey, RA. Sulfonic acid and sulfomethyl-containing graft co-polymers of xanthan gum. ACS Symp Ser Carbohydr Sulfates. 1978;77:193–202. .
17. Loria-Bastarrachea, MI, Herrera-Kao, W, Cauich-Rodriguez, JV, Cervantes-Ue, JM, Vazquez-Torres, H, Avila-Ortega, A. A TG/FTIR study on the thermal degradation of poly(vinyl pyrrolidone). J Therm Anal Calorim. 2011;104:737–742. .
18. Fernandez, MD, Fernandez, MJ. Thermal decomposition of copolymers from ethylene with some vinyl derivatives. J Therm Anal Calorim. 2008;91:447–454. .
19. Carrillo, F, Defays, B, Colom, X, Suñol, JJ, Lopez-Mesas, M. Thermal degradation of lyocell/poly-N-isopropylacrylamide graft copolymer gels. J Therm Anal Calorim. 2009;97:945–948. .
20. Shenoy M , D’Melo D. Guar gum as a filler in unsaturated polyester composites. e-polymers. 2007;111:1–11.
21. Mundargi, RC, Patil, SA, Aminabhavi, TM. Evaluation of acrylamide-grafted-xanthan gum copolymer matrix tablets for oral controlled delivery of antihypertensive drugs. Carbohydr Polym. 2007;69:130–141. .
22. Mothe, CG, Correia, DZ, de Franca, FFP. Thermal and rheological study of polysaccharides for enhanced oil recovery. J Therm Anal Calorim. 2006;85:31–36. .
23. Behari, K, Taunk, K. Graft copolymerization of methacrylamide on guar gum using PDP/malonic acid redox pair. Indian J Chem Technol. 1997;4: 3 141–144.
24. Srivastava, A, Behari, K. Synthesis and characterization of Graft copolymer and studies for metal ion sorption and swelling behavior (guar gum-g-N-vinyl-2-pyrrolidone). J Appl Polym Sci. 2006;100: 3 2480–2489. .
25. Pandey, PK, Srivastava, A, Behari, K. Studies on graft copolymerization of 2-acrylamido-2-methyl-1-propane sulphonic acid onto guar gum by bromate/Mandelic acid redox pair. DES MONOMERS POLYM. 2006;9: 3 247–260. .
26. Behari, K, Taunk, K, Tripathi, M. Cu2+ mandelic acid redox pair initiated graft copolymerization acrylamide onto guar gum. J Appl Polym Sci. 1999;71:739–745. .
27. Behari, K, Tripathi, M, Taunk, K, Kumar, R. Graft copolymerization of acrylic acid onto guar gum. Polym Int. 2000;49:153–157. .
28. Srivastava, A, Mishra, V, Singh, SK, Kumar, R. One pot synthesis and characterization of industrially important graft copolymer (GOH-g-ACM) by using peroxymonosulphate/mercaptosuccinic acid redox pair. e-Polymers. 2009;6:1–14.
29. Srivastava, A, Mishra, V, Singh, SK, Kumar, R. Vanadium (V)/Mandelic acid initiated graft copolymerization of acrylamide onto guar gum in an aqueous medium. J Appl Polym Sci. 2010;115: 4 2375–2385. .
30. Mishra, V, Kumar, R. Synthesis and characterization of five-arms star polymer of N-vinyl pyrrolidone through ATRP based on glucose. Carbohydr Polym. 2011;83:1534–1540. .
31. Mishra, V, Kumar, R. Graft copolymer of guar gum and 4-amino antipyrine by atom transfer radical polymerization in aqueous medium. Carbohydr Polym. 2011;86:296–303. .
32. Taunk, K, Behari, K. Graft copolymerization of acrylic acid onto guar gum. J Appl Polym Sci. 2000;77:39–44. .
33. Pandey, PK, Srivastava, A, Tripathy, J, Behari, K. Graft copolymerization of acrylic acid onto guar gum initiated by vanadium-mercaptosuccinic acid redox pair. Carbohydr Polym. 2006;65:414–420. .
34. Behari, K, Banerjee, J, Srivastava, A, Mishra, DK. Studies on graft copolymerization of N-vinyl formamide on to guar gum initiated by bromate/ascorbic acid redox pair. Indian J Chem Technol. 2005;12:664–670.
35. Kumar, R, Srivastava, A, Behari, K. Graft copolymerization of methacrylic acid onto xanthan gum by Fe2+/H2O2 redox initiator. J Appl Polym Sci. 2007;105: 4 1922–1929. .
36. Banerjee, J, Srivastava, A, Srivastava, A, Behari, K. Studies on synthesis and characterization of xanthan gum-g-N-vinyl formamide using PMS/Ag(I) system. J Appl Polym Sci. 2006;101: 3 1637–1645. .
37. Srivastava, A, Behari, K. Graft copolymerization of 2-acrylamido-2-methyl-1-propane sulphonic acid onto xanthan gum by ascorbic/bromate redox pair. Polym Mater Sci Eng. 2004;90:697–698.
38. Kumar, R, Srivastava, A, Behari, K. Synthesis and characterization of polysaccharide based graft copolymer by using potassium peroxymonosulphate/ascorbic acid as an efficient redox initiator in inert atmosphere. J Appl Polym Sci. 2009;112: 3 1407–1415. .
39. Doyle, CD. Estimating thermal stability of experimental polymers by empirical thermogravimetric analysis. Anal Chem. 1961;33:77–79. .
40. Conley RT . In: Conley RT, editor. Thermal stability of polymers, vol 1. New York: Marcel Dekker; 1970. p. 254–63.