The thermal decomposition behavior of oxovanadium(IV)hydroxamate complexes of composition [VO(acac)(C6H5C(O)NHO)] (I), [VO(C6H5C(O)NHO)2] (II), [VO(acac)(4-ClC6H4C(O)NHO)] (III), [VO(4-ClC6H4C(O)NHO)2] (IV) (where acac = (CH3COCHCOCH3–) synthesized from the reactions of VO(acac)2 with equi- and bimolar amounts of potassium benzohydroxamate and potassium 4-chlorobenzohydroxamate in THF + MeOH solvent medium has been studied by TG and DTA techniques. TG curves indicated that complexes I, II, and IV undergo decomposition in single step to yield VO2 as the final residue, while complex III decomposes in two steps to yield VO(acac) as the likely intermediate and VO2 as the ultimate product of decomposition. The formation of VO2 has been authenticated by IR and XRD studies. From the initial decomposition temperatures, the order of thermal stability for the complexes has been inferred as IV > I > III > II.
1. Dipankar, M, Jaromir, M, Sheldrick, WS, Mayer-figge, H, Mahammad, A. Synthesis, crystal structures and catalytic oxidation of aromatic hydrocarbons by oxovanadium(V) complexes of aminebis(phenolate) ligands. J Mol Catal A: Chem. 2007;270:153–159. .
2. Maurya MR , Kumar U, Manikandan P. Polymer supported vanadium and molybdenum complexes as potential catalysts for the oxidation and oxidative bromination of organic substrates. Dalton Trans. 2006; 3561–75.
3. Zhang, W, Basak, A, Kosugi, Y, Hoshino, Y, Yamamoto, H. Enantioselective epoxidation of allylic alcohols by a chiral complex of vanadium: an effective controller system and a rational mechanistic model. Angew Chem Int Ed. 2005;44:4389–4391. .
4. Zhang, W, Yamamoto, H. Vanadium-catalyzed asymmetric epoxidation of homoallylic alcohols. J Am Chem Soc. 2007;129:286–287. .
5. Hirao, T, Fujii, T, Tanaka, T, Ohshiro, Y. A novel regioselective ring-opening oxidation of cyclobutenones with VO(OEt)Cl2. J Chem Soc Perkin Trans. 1994;1:3–4. .
6. Aureliano, M, Crans, DC. Decavanadate (V10O28 6−) and oxovanadates: oxometalates with many biological activities. J Inorg Biochem. 2009;103:536–546. .
7. Wang, Q, Liu, TT, Fu, Y, Wang, K, Yang, XG. Vanadium compounds discriminate hepatoma and normal hepatic cells by differential regulation of reactive oxygen species. J Biol Inorg Chem. 2010;15:1087–1097. .
8. Sanna, D, Buglyo′, P, Micera, G, Garribba, E. A quantitative study of the biotransformation of insulin-enhancing VO2+ compounds. J Biol Inorg Chem. 2010;15:825–839. .
9. Badea, M, Olar, R, Marinescu, D, Uivarosi, V, Aldea, V, Nicolescu, TO. Thermal stability of new vanadyl complexes with flavonoid derivatives as potential insulin-mimetic agents. J Therm Anal Calorim. 2010;99:823–827. .
10. Khalameida, SV, Skubiszewska-Zie˛ba, J, Zazhigalov, VA, Leboda, R, Wieczorek-Ciurowa, K. Chemical and phase transformation in the V2O5–(NH4)2Mo2O7 system during the mechanochemical treatment in various media. J Therm Anal Calorim. 2010;101:823–832. .
11. Filipek, E, Piz, M. The reactivity of SbVO5 with T-Nb2O5 in solid state in air. J Therm Anal Calorim. 2010;101:447–453. .
12. Sydorchuk, V, Khalameida, S, Zazhigalov, V, Skubiszewska-Zieba, J, Leboda, R. Solid-state interactions of vanadium and phosphorus oxides in the closed systems. J Therm Anal Calorim. 2010;100:11–17. .
13. Melnikov, P, Gonc¸alves, RV, Wender, H. Synthesis of Sb(VO3)3 and study of ternary system xNH4VO3+(1−x)(NH4)2HPO4+Sb2O3. J Therm Anal Calorim. 2011;105:107–112. .
14. Ahamad, MN, Vaish, R, Varma, KBR. Calorimetric studies on 2TeO2–V2O5 glasses. J Therm Anal Calorim. 2011;105:239–243. .
15. Vlad, M, Labádi, I, Saity, L, Tudose, R, Linert, W, Costisor, O. Synthesis, characterisation and thermal properties of [Cu(VO)2(C2O4)3(4,4′-bpy)2·2H2O]A 2D polymer. J Therm Anal Calorim. 2008;91:925–928. .
16. Modi, CK, Patel, MN. Synthetic, spectroscopic and thermal aspects of some heterochelates. J Therm Anal Calorim. 2008;94:247–255. .
17. Fisher, DC, Barclay-Peet, SJ, Balfe, CA, Raymond, KN. Synthesis and characterization of vanadium(V) and -(IV) hydroxamate complexes. X-ray crystal structures of oxochlorobis(benzohydroxamato)vanadium(V) and oxoisopropoxo(N,N′-dihydroxy-N,N′-diisopropylheptanediamido)vanadium(V). Inorg Chem. 1989;28:06–4399. .
18. Liu, YM, Cao, Y, Yi, N, Feng, WL, Dai, WL, Yan, SR, He, HY, Fan, KN. Vanadium oxide supported on mesoporous SBA-15 as highly selective catalysts in the oxidative dehydrogenation of propane. J Catal. 2004;224:417–428. .
19. Li, Y, Huang, Z, Rong, S. A Vanadium oxide nanotube-based nitric oxide gas sensor. Sen Mater. 2006;18:241–249.
20. Zheng, C, Zhang, J, Luo, G, Ye, J, Wu, M. Preparation of vanadium dioxide powders by thermolysis of a precursor at low temperature. J Mater Sci. 2000;35:3425–3429. .
21. Zheng, C, Zhang, X, Zhang, J, Liao, K. Preparation and characterization of VO2 nanopowders. J Solid State Chem. 2001;156:274–280. .
22. Occhiuzzi, M, Cordischi, D, Dragone, R. Reactivity of some vanadium oxides: an EPR and XRD study. J Solid State Chem. 2005;178:1551–1558. .
23. Lappalainen, J, Heinilehto, S, Saukko, S, Lantto, V, Jantunen, H. Microstructure dependent switching properties of VO2 thin films. Sensor Actuat A-Phys. 2008;142:250–255. .
24. Velichko, AA, Kuldin, NA, Stefanovich, GB, Pergament, AL. Controlled switching dynamics in Si-SiO2-VO2 structures. Tech Phys Lett. 2003;29:507–509. .
25. Wang, H, Yi, X, Chen, S, Fu, X. Fabrication of vanadium oxide micro-optical switches. Sensor Actuat A-Phys. 2005;122:108–112. .
26. Xiao, D, Kim, KW, Zavada, JM. Imaging properties of a metallic photonic crystal. J Appl Phys. 2007;101:1131051–1131055.
27. Nguyen, C-A, Shin, H-J, Kim, KT, Han, Y-H, Moon, S. Characterization of uncooled bolometer with vanadium tungsten oxide infrared active layer. Sensor Actuat A-Phys. 2005;123:87–91. .
28. Lee, M-H, Kim, M-G. RTA and stoichiometry effect on the thermochromism of VO2 thin films. Thin Solid Films. 1996;286:219–222. .
29. Cui, J, Da, D, Jiang, W. Structure characterization of vanadium oxide thin films prepared by magnetron sputtering methods. Appl Surf Sci. 1998;133:225–229. .
30. Nagashima, M, Wada, H, Tanikawa, K, Shirahata, H. The Electronic behaviors of oxygen-deficient VO2 thin films in low temperature region. Jpn J Appl Phys. 1998;37:4433–4438. .
31. Muraoka, Y, Hiroi, Z. Metal–insulator transition of VO2 thin films grown on TiO2 001 and 110 substrates. Appl Phys Lett. 2002;80:583–585. .
32. Béteille, F, Mazerolles, L, Livage, J. 1999 Microstructure and metal-insulating transition of VO2 thin films. Mater Res Bull. 34:2177–2184. .
33. Sediri, F, Gharbi, N. Controlled hydrothermal synthesis of VO2(B) nanobelts. Mater Lett. 2009;63:15–18. .
34. Channu, VSR, Holze, R, Rambabu, B, Kalluru, RR, Williams, QL, Wen, C. Reduction of V4+ from V5+ using polymer as a surfactant for electrochemical applications. Int J Electrochem Sci. 2010;5:605–614.
35. Sharma, N, Kumari, M, Kumar, V, Chaudhry, SC, Kanwar, SS. Synthesis, characterization and antibacterial activity of vanadium (IV) complexes of hydroxamic acids. J Coord Chem. 2010;63:176–184. .
36. Rowe, RA, Jones, MM. Vanadium(IV)oxy(acetylacetonate). Inorg Synth. 1957;5:113–116. .
37. Cooley, JH, Bills, WD, Throckmorton, JR. Preparation of some alkyl-substituted monohydroxamic acids, N-acyl-O-alkylhydroxylamines. J Org Chem. 1960;25:1734–1736. .
38. Botto, IL, Vassallo, MB, Baran, EJ, Minelli, G. IR spectra of VO2 and V2O3. Mater Chem Phys. 1997;50:267–270. .
39. Mlyuka, NR, Niklasson, GA, Granqvist, CG. Thermochromic VO2-based multilayer films with enhanced luminous transmittance and solar modulation. Phys Status Solidi A. 2009;206:2155–2160. .