View More View Less
  • 1 School of Energy and Power Engineering, Shandong University, No. 17923 Jingshi Road, Jinan 250061, China
Restricted access

Abstract

The calcination characteristics, sulfation conversion, and sulfation kinetics of a white mud from paper manufacture at fluidized bed combustion temperatures were investigated in a thermogravimetric analyzer. Also, the comparison between the white mud and the limestone in sulfation behavior and microstructure was made. Although the white mud and the limestone both contain lots of CaCO3, they are different in the alkali metal ions content and microstructure. It results in a marked difference in sulfation behavior between the white mud and the limestone. The CaO derived from white mud achieves the maximum sulfation conversion of 83% at about 940 °C which is 1.7 times higher than that derived from limestone at about 880 °C. The shrinking unreacted core model is appropriate to analyze the sulfation kinetics of the white mud. The chemical reaction activation energy Ea and the activation energy for product layer diffusion Ep for the sulfation of the white mud are 44.94 and 55.61 kJ mol−1, respectively. Ep for the limestone is 2.8 times greater than that for the white mud. The calcined white mud possesses higher surface area than the calcined limestone. Moreover, the calcined white mud has more abundant pores in 4–24 nm range which is almost optimum pore size for sulfation. It indicates that the microstructure of the white mud is beneficial for SO2 removal.

  • 1. Livraghi, S, Paganini, MC, Giamello, E. SO2 reactivity on the MgO and CaO surfaces: a CW-EPR study of oxo-sulphurradical anions. J Mol Catal. 2010;322:3944. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2. Sakizci, M, Alver, BE, Yorukogullari, E. Thermal and SO2 adsorption properties of some lays from Turkey. J Therm Anal Calorim. 2011;103:435441. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3. Trikkel, A, Zevenhoven, R, Kuusik, R. Modelling SO2 capture by Estonian limestones and dolomites. Proc Est Acad Sci Chem. 2000;49:5370.

    • Search Google Scholar
    • Export Citation
  • 4. Crnkovic, PM, Milioli, FE, Pagliuso, JD. Kinetics study of the SO2 sorption by Brazilian dolomite using thermogravimetry. Thermochim Acta. 2006;447:161166. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5. Anthony, EJ, Bulewicz, EM, Jia, L. Reactivation of limestone sorbents in FBC for SO2. Prog Energy Combust Sci. 2007;33:171210. .

  • 6. Trikkel, A, Keelmann, M, Kaljuvee, T. CO2 and SO2 uptake by oil shale ashes: effect of pre-treatment on kinetics. J Therm Anal Calorim. 2010;99:763769. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7. Kaljuvee, T, Toom, M, Trikkel, A, Kuusik, R. Reactivity of oil shale ashes in the binding of SO2. J Therm Anal Calorim. 2007;88:5158. .

  • 8. Kaljuvee, T, Trikkel, A, Kuusik, R. Decarbonization of natural lime-containing materials and reactivity of calcined products towards SO2 and CO2. J Therm Anal Calorim. 2001;64:12291240. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9. Robertson A , Goidich S, Fan Z. 1300°F 800 MWe USC CFB boiler design study. In: Proceedings of the 20th International Conference on Fluidized Bed Combustion, Xian, China; 2009, p. 12531.

    • Search Google Scholar
    • Export Citation
  • 10. Liu, W, Yang, J, Xiao, B. Review on treatment and utilization of bauxite residues in China. Int J Miner Process. 2009;93:220231. .

  • 11. Gorai, B, Jana, RK. Premchand, Characteristics and utilization of copper slag-review. Resour Conserv Recycl. 2003;39:299313. .

  • 12. Wang, SB, Ang, HM, Tade, MO. Novel applications of red mud as coagulant, adsorbent and catalyst for environmentally benign processes. Chemosphere. 2008;72:16211635. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13. Yamada, K, Harato, F. SO2 removal from waste-gas by red mud slurry pilot test and operation results of the plant. Kagaku Kogaku Ronbun. 1982;8:3238. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14. Fan, HL, Li, CH, Xie, KC. Testing of iron oxide sorbent for high-temperature coal gas desulfurization. Energy Sour. 2005;27:245250. .

  • 15. Cheng, J, Zhou, JH, Liu, JZ, Cao, XY, Cen, KF. Physicochemical characterizations and desulfurization properties in coal combustion of three calcium and sodium industrial wastes. Energy Fuels. 2009;23:25062516. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16. Lin, S, Luo, HJ. Preparation of soil nutrient amendment using white mud produced in ammonia-soda process and its environmental assessment. Trans Nonferrous Met Soc China. 2009;19:13831388. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17. Zhu, MX, Lee, L, Wang, HH, Wang, Z. Removal of an anionic dye by adsorption/precipitation processes using alkaline white mud. J Hazard Mater. 2007;149:735741. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18. Laursen, K, Grace, JR, Lim, CJ. Enhancement of the sulfur capture capacity of limestones by addition of the Na2CO3 and NaCl. Environ Sci Technol. 2001;35:43844389. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19. Laursen, K, Kern, AA, Grace, JR, Lim, CJ. Characterization of the enhancement effect of Na2CO3 on the sulfur capture capacity of limestones. Environ Sci Technol. 2003;37:37093715. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20. Siagi, ZO, Mbarawa, M, Mohamed, AR, Lee, KT, Dahlan, I. The effects of limestone type on the sulphur capture of slaked lime. Fuel. 2007;86:26602666. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21. Stanmore, BR, Gilot, P. 2005 Review-calcination and carbonation of limestone during thermal cycling for CO2 sequestration. Fuel Process Technol. 86:17071743. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22. Anthony, EJ, Granatstein, DL. Sulfation phenomena in fluidized bed combustion systems. Prog Energy Combust Sci. 2001;27:215236. .

  • 23. Li, RY, Qi, HY, You, CF, Xu, XC. Kinetic model of CaO/fly ash sorbent for flue gas desulphurization at moderate temperatures. Fuel. 2007;86:785792. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24. Wu, ZH, Kou, P, Yu, ZW. The modulation of desulphurization properties of calcium oxide by alkali carbonates. J Therm Anal Calorim. 2002;67:745750. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25. Mohamed, AR. Kinetic model for the reaction between SO2 and coal fly ash/CaO/CaSO4 sorbent. J Therm Anal Calorim. 2005;79:691695. .

  • 26. Chrissafis, K. Multicyclic study on the carbonation of CaO using different limestones. J Therm Anal Calorim. 2007;89:525529. .

  • 27. Chrissafis, K, Paraskevopoulos, KM. The effect of sintering on the maximum capture efficiency of CO2 using a carbonation/calcination cycle of carbonate rocks. J Therm Anal Calorim. 2005;81:463468. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28. Chrissafis, K, Dagounaki, C, Paraskevopoulos, KM. The effects of procedural variables on the maximum capture efficiency of CO2 using a carbonation/calcination cycle of carbonate rocks. Thermochim Acta. 2005;428:193198. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29. Wieczorek-Ciurowa, K. Peculiarities of interactions in the CaCO3/CaO-SO2/SO3-air system. J Therm Anal Calorim. 1998;53:649658. .

  • 30. Laursen, K, Duo, W, Grace, JR, Lim, CJ. Sulfation and reactivation characteristics of nine limestones. Fuel. 2000;79:153163. .

  • 31. Mahuli, SK, Agnihotri, R, Chauk, S, Ghosh-Dastidar, A, Wei, SH, Fan, LS. Pore-structure optimization of calcium carbonate for enhanced sulfation. AIChE J. 1997;43:23232335. .

    • Crossref
    • Search Google Scholar
    • Export Citation

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)