Authors:
Mauro Francisco Pinheiro da Silva Instituto de Química, Universidade de São Paulo, CP 26077, São Paulo, SP, 05513-970, Brazil
Instituto Educacional Oswaldo Quirino, Faculdade de Ciências Farmacêuticas e Bioquímicas, Rua Brigadeiro Galvão 540, Barra Funda, Ltda, São Paulo, SP, Brazil

Search for other papers by Mauro Francisco Pinheiro da Silva in
Current site
Google Scholar
PubMed
Close
,
Heloisa Cristina de Jesus Fraga da Costa Instituto Educacional Oswaldo Quirino, Faculdade de Ciências Farmacêuticas e Bioquímicas, Rua Brigadeiro Galvão 540, Barra Funda, Ltda, São Paulo, SP, Brazil

Search for other papers by Heloisa Cristina de Jesus Fraga da Costa in
Current site
Google Scholar
PubMed
Close
,
Eduardo Rezende Triboni Instituto de Química, Universidade de São Paulo, CP 26077, São Paulo, SP, 05513-970, Brazil

Search for other papers by Eduardo Rezende Triboni in
Current site
Google Scholar
PubMed
Close
,
Mário José Politi Instituto de Química, Universidade de São Paulo, CP 26077, São Paulo, SP, 05513-970, Brazil

Search for other papers by Mário José Politi in
Current site
Google Scholar
PubMed
Close
, and
Paulo Celso Isolani Instituto de Química, Universidade de São Paulo, CP 26077, São Paulo, SP, 05513-970, Brazil

Search for other papers by Paulo Celso Isolani in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The synthesis and characterization of graphite oxide (GO), graphene (GS), and the composites: GS–CeO2 and GO–CeO2 are reported. This synthesis was carried out by mixing aqueous solutions of CeCl3·7H2O and GO, which yields the oxidized composite GO–CeO2. GO–CeO2 was hydrothermally reduced with ethylene glycol, at 120 °C, yielding the reduced composite GS–CeO2. GO, GS ,and the composites with CeO2 were characterized by CHN, TG/DTG, BET, XRD, SEM microscopy, FTIR, and Raman spectroscopy. The estimation of crystallite size of CeO2 anchored on GO and on GS by Raman, XRD, and SEM agreed very well showing diameters about 5 nm. The role of particles of CeO2 coating carbon sheets of GO and GS was discussed.

  • 1. Trovarelli, A, Leitenburg, C, Boaro, M, Dolcetti, G. 1999 The utilization of ceria in industrial catalysis. Catal Today. 50:353367. .

  • 2. Tsunekawa, S, Sahara, R, Kawazoe, Y, Ishikawa, K. 1999 Lattice relaxation of monosize CeO2 nanocrystalline particles. Appl Surf Sci. 152:5356. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3. Tana , Zhang, M, Li, J, Li, H, Li, Y, Shen, W. 2009 Morphology-dependent redox and catalytic properties of CeO2 nanostructures: nanowires, nanorods and nanoparticles. Catal Today. 148:179183. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4. Pinheiro da Silva, MF, Soeira, LS, Dagasthanli, KRP, Martins, TS, Cucovia, IM, Freire, RS, Isolani, PC. 2010 CeO2-catalyzed ozonation of phenol: the role of cerium citrate as precursor of CeO2. J Therm Anal Calorim. 102:907913. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5. da Silva, MFP, Matos, JR, Isolani, PC. 2008 Synthesis, characterization and thermal analysis of 1:1 and 2:3 lanthanide(III) citrates. J Therm Anal Calorim. 94:305311. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6. da Silva, MFP, Carvalho, FMS, Martins, TS, Fantini, MCA, Isolani, PC. 2010 The role of citrate precursors on the morphology of lanthanide oxides obtained by thermal decomposition. J Therm Anal Calorim. 99:385390. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7. William, S, Hummers Jr, Offeman, RE. 1958 Preparation of graphitic oxide. J Am Chem Soc. 80:13391342. .

  • 8. Chen, S, Zhu, J, Huang, H, Zeng, G, Nie, F, Wang, X. 2010 Facile solvothermal synthesis of graphene–MnOOH nanocomposites. J Solid State Chem. 183:25522557. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9. Xu, C, Wang, X, Yang, L, Wu, Y. 2009 Fabrication of a graphene–cuprous oxide composite. J Solid State Chem. 182:24862490. .

  • 10. Zhang, K, Dwivedi, V, Chi, C, Wu, J. Graphene oxide/ferric hydroxide composites for efficient arsenate removal from drinking water. J Hazard Mater. 2010;182:162168. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11. Lu, T, Zhang, Y, Li, H, Pan, L, Li, Y, Sun, Z. Electrochemical behaviors of graphene–ZnO and graphene–SnO2 composite films for supercapacitors. Electrochim Acta. 2010;55:41704173. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12. Yao, J, Shen, X, Wang, B, Liu, H, Wang, G. 2009 In situ chemical synthesis of SnO2–graphene nanocomposite as anode materials for lithium-ion batteries. Electrochem Commun. 11:18491852. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13. Zhu, N, Liu, W, Xue, M, Xie, Z, Zhao, D, Hang, MZ, Chen, J, Cao, T. Graphene as a conductive additive to enhance the high-rate capabilities of electrospun Li4Ti5O12 for lithium-ion batteries. Electrochim Acta. 2010;55:58135818. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14. Jeong, H, Lee, YP, Lahaye, RJWE, Park, M, An, KH, Kim, IJ, Yang, C, Park, CY, Ruoff, RS, Lee, YH. 2008 J Am Chem Soc. 130:13621366. .

  • 15. Nethravathi, C, Rajamathi, Ml. Chemically modified graphene sheets produced by the solvothermal reduction of colloidal dispersions of graphite oxide. Carbon. 2008;461:994998.

    • Search Google Scholar
    • Export Citation
  • 16. Kosacki, I, Suzuki, T, Petrovsky, V, Anderson, HU, Colomban, PH. Raman scattering and lattice defects in nanocrystalline CeO2 thin films. Solid State Ion. 2002;149:99105.

    • Search Google Scholar
    • Export Citation
  • 17. Bärnighausen, H, Schiller, G. The crystal structure of A-Ce2O3. J Less Common Metals. 1985;110:385390. .

  • 18. Guinier A . Theorie et Technique de la Radiocristallographie. 3rd ed. Paris: Dunod; 1964.

  • 19. Wang, B, Park, J, Wang, C, Ahn, H, Wang, G. Mn3O4 nanoparticles embedded into graphene nanosheets: preparation, characterization, and electrochemical properties for supercapacitors. Electrochim Acta. 2010;55:68126819. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20. D’Assunção, LM, Giolito, I, Ionashiro, M. Thermal decomposition of the hydrated basic carbonates of lanthanides and yttrium. Thermochimica Acta. 1989;137:319330. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21. Mermoux, M, Shabre, Y, Russeal, A. FTIR AND 13C NMR study of graphite oxide. Carbon. 1991;29:469474. .

  • 22. Nakamoto K . Infrared and Raman spectra of inorganic and coordination compounds. 4th ed. Toronto: John Wiley and Sons; 1986.

  • 23. Wang, G, Bai, J, Wang, Y, Ren, Z, Bai, J. Preparation and electrochemical performance of a cerium oxide–graphene nanocomposite as the anode material of a lithium ion battery. Scripta Mater. 2011;65:339342. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
1
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Dec 2023 64 1 4
Jan 2024 25 1 1
Feb 2024 78 0 0
Mar 2024 26 2 3
Apr 2024 6 0 0
May 2024 5 0 0
Jun 2024 7 0 0