Authors:
Hui-Zhou Gao Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710069, People’s Republic of China

Search for other papers by Hui-Zhou Gao in
Current site
Google Scholar
PubMed
Close
,
Qi Yang Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710069, People’s Republic of China

Search for other papers by Qi Yang in
Current site
Google Scholar
PubMed
Close
,
Xiao-Yan Yan Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710069, People’s Republic of China

Search for other papers by Xiao-Yan Yan in
Current site
Google Scholar
PubMed
Close
,
Zhu-Jun Wang Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710069, People’s Republic of China

Search for other papers by Zhu-Jun Wang in
Current site
Google Scholar
PubMed
Close
,
Ji-Li Feng Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710069, People’s Republic of China

Search for other papers by Ji-Li Feng in
Current site
Google Scholar
PubMed
Close
,
Xia Yang Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710069, People’s Republic of China

Search for other papers by Xia Yang in
Current site
Google Scholar
PubMed
Close
,
Sheng-Li Gao Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710069, People’s Republic of China

Search for other papers by Sheng-Li Gao in
Current site
Google Scholar
PubMed
Close
,
Lei Feng Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710069, People’s Republic of China

Search for other papers by Lei Feng in
Current site
Google Scholar
PubMed
Close
,
Xu Cheng Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710069, People’s Republic of China

Search for other papers by Xu Cheng in
Current site
Google Scholar
PubMed
Close
,
Chao Jia Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710069, People’s Republic of China

Search for other papers by Chao Jia in
Current site
Google Scholar
PubMed
Close
, and
Ke-Wu Yang Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710069, People’s Republic of China

Search for other papers by Ke-Wu Yang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In an effort to probe the reaction of antibiotic hydrolysis catalyzed by B3 metallo-β-lactamase (MβL), the thermodynamic parameters of penicillin G hydrolysis catalyzed by MβL L1 from Stenotrophomonas maltophilia were determined by microcalorimetric method. The values of activation free energy ΔGθ are 88.26, 89.44, 90.49, and 91.57 kJ mol−1 at 293.15, 298.15, 303.15, and 308.15 K, respectively, activation enthalpy ΔHθ is 24.02 kJ mol−1, activation entropy ΔSθ is −219.2511 J mol−1 K−1, apparent activation energy E is 26.5183 kJ mol−1, and the reaction order is 1.0. The thermodynamic parameters reveal that the penicillin G hydrolysis catalyzed by MβL L1 is an exothermic and spontaneous reaction.

  • 1. Wang, Z, Fast, W, Valentine, AM, Benkovic, SJ. Metallo-beta-lactamase: structure and mechanism. Curr Opin Chem Biol. 1999;3: 5 614622. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2. Krishna, B. New Delhi metallo-beta-lactamases: a wake-up call for microbiologists. Indian J Med Microbiol. 2010;28: 3 265266. .

  • 3. Kumarasamy, KK, Toleman, MA, Walsh, TR, Bagaria, J, Butt, F, Balakrishnan, R, et al. Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet Infect Dis. 2010;10: 9 597602. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4. Anzellotti, A, Farrell, N. Zinc metalloproteins as medicinal targets. Chem Soc Rev. 2008;37: 8 16291651. .

  • 5. Fischbach, MA, Walsh, CT. Antibiotics for emerging pathogens. Science. 2009;325: 5944 10891093. .

  • 6. Fisher, JF, Meroueh, SO, Mobashery, S. Bacterial resistance to beta-lactam antibiotics: compelling opportunism, compelling opportunity. Chem Rev. 2005;105: 2 395424. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7. Bush, K, Jacoby, GA. Updated functional classification of {beta}-lactamases. Antimicrob Agents Chemother. 2010;54: 3 969976. .

  • 8. Crowder, MW, Spencer, J, Vila, AJ. Metallo-beta-lactamases: novel weaponry for antibiotic resistance in bacteria. Acc Chem Res. 2006;39: 10 721728. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9. Garrity, JD, Carenbauer, AL, Herron, LR, Crowder, MW. Metal binding Asp-120 in metallo-beta-lactamase L1 from Stenotrophomonas maltophilia plays a crucial role in catalysis. J Biol Chem. 2004;279: 2 920927. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10. Hu, Z, Spadafora, LJ, Hajdin, CE, Bennett, B, Crowder, MW. Structure and mechanism of copper- and nickel-substituted analogues of metallo-beta-lactamase L1. Biochemistry. 2009;48: 13 29812989. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11. Carenbauer, AL, Garrity, JD, Periyannan, G, Yates, RB, Crowder, MW. 2002 Probing substrate binding to metallo-beta-lactamase L1 from Stenotrophomonas maltophilia by using site-directed mutagenesis. BMC Biochem. 3:416. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12. Crowder, MW, Walsh, TR, Banovic, L, Pettit, M, Spencer, J. Overexpression, purification, and characterization of the cloned metallo-beta-lactamase L1 from Stenotrophomonas maltophilia. Antimicrob Agents Chemother. 1998;42: 4 921926.

    • Search Google Scholar
    • Export Citation
  • 13. LeBlond, C, Wang, J, Larsen, RD, Orella, CJ, Forman, AL, Landau, RN, et al. Reaction calorimetry as an in situ kinetic tool for characterizing complex reactions. Thermochim Acta. 1996;289: 2 189207. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14. Kong, W, Li, Z, Xiao, X, Zhao, Y, Zhang, P. Activity of berberine on Shigella dysenteriae investigated by microcalorimetry and multivariate analysis. J Therm Anal Calorim. 2010;102: 1 331336. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15. Zhao Y , Wang J, Shan L, Li R, Yan D, Xiao X. Activity of ginsenoside Rh on the growth of mice splenic lymphocytes investigated by microcalorimetry and factor analysis. J Therm Anal Calorim. 2010. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16. Dragoi, B, Rakic, V, Dumitriu, E, Auroux, A. Adsorption of organic pollutants over microporous solids investigated by microcalorimetry techniques. J Therm Anal Calorim. 2010;99: 3 733740. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17. Zhao, Y, Yan, D, Wang, J, Zhang, P, Xiao, X. Anti-fungal effect of berberine on Candida albicans by microcalorimetry with correspondence analysis. J Therm Anal Calorim. 2010;102: 1 4955. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18. Wang, J, Cheng, D, Zeng, N, Xia, H, Fu, Y, Yan, D, et al. Application of microcalorimetry and principal component analysis. J Therm Anal Calorim. 2010;102: 1 137142. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19. Yang, L, Sun, L, Xu, F, Zhang, J, Zhao, J, Zhao, Z. Inhibitory study of two cephalosporins on E. coli by microcalorimetry. J Therm Anal Calorim. 2010;100: 2 589592. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20. Lago N , Legido J, Paz Andrade M, Arias I, Casás L. Microcalorimetric study on the growth and metabolism of Pseudomonas aeruginosa. J Therm Anal Calorim. 2010. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21. López-Fonseca, R, Landa, I, Elizundia, U, Gutiérrez-Ortiz, MA, González-Velasco, JR. Thermokinetic modeling of the combustion of carbonaceous particulate matter. Combust Flame. 2006;144: 1–2 398406. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22. Völker, S, Rieckmann, T. Thermokinetic investigation of cellulose pyrolysis-impact of initial and final mass on kinetic results. J Anal Appl Pyrolysis. 2002;62: 2 165177. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23. Illeková, E, Svec, P, Miglierini, M. Thermokinetic analysis of the multistep crystallization of a NANOPERM-type ribbon. J Non-Cryst Solids. 2007;353: 32–40 33423347. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24. Bouchoux, G, Buisson, DA. Gas phase basicity of X(CH2)3Y(X, Y=OH, NH2) by the thermokinetic method. Int J Mass Spectrom. 2006;249–250:412419.

    • Search Google Scholar
    • Export Citation
  • 25. Ji, M, Liu, M, Gao, S, Shi, Q. A new microcalorimeter for measuring thermal effects. Instrum Sci Technol. 2001;29: 1 5357. .

  • 26. Marthada, V. The enthalpy of solution of SRM 1655 (KCl) in H2O. J Res NBS Standards. 1980;85: 6 467474.

  • 27. Hu, Z, Periyannan, G, Bennett, B, Crowder, MW. Role of the Zn1 and Zn2 sites in metallo-beta-lactamase L1. J Am Chem Soc. 2008;130: 43 1420714216. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28. Gao, S, Chen, S, Hu, R, Li, H, Shi, Q. Derivation and application of thermodynamic equations. Chin J Inorg Chem. 2002;18: 4 362366.

    • Search Google Scholar
    • Export Citation
  • 29. Liu, J-S, Zeng, X-C, Tian, A-M, Deng, Y. Application of a reduced-extent method to thermokinetic studies of enzyme-catalyzed reactions. Thermochim Acta. 1995;253:275283. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
1
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Dec 2024 28 0 0
Jan 2025 39 0 0
Feb 2025 56 0 0
Mar 2025 48 0 0
Apr 2025 22 0 0
May 2025 4 0 0
Jun 2025 0 0 0