In an effort to probe the reaction of antibiotic hydrolysis catalyzed by B3 metallo-β-lactamase (MβL), the thermodynamic parameters of penicillin G hydrolysis catalyzed by MβL L1 from Stenotrophomonas maltophilia were determined by microcalorimetric method. The values of activation free energy ΔG≠θ are 88.26, 89.44, 90.49, and 91.57 kJ mol−1 at 293.15, 298.15, 303.15, and 308.15 K, respectively, activation enthalpy ΔH≠θ is 24.02 kJ mol−1, activation entropy ΔS≠θ is −219.2511 J mol−1 K−1, apparent activation energy E is 26.5183 kJ mol−1, and the reaction order is 1.0. The thermodynamic parameters reveal that the penicillin G hydrolysis catalyzed by MβL L1 is an exothermic and spontaneous reaction.
1. Wang, Z, Fast, W, Valentine, AM, Benkovic, SJ. Metallo-beta-lactamase: structure and mechanism. Curr Opin Chem Biol. 1999;3: 5 614–622. .
2. Krishna, B. New Delhi metallo-beta-lactamases: a wake-up call for microbiologists. Indian J Med Microbiol. 2010;28: 3 265–266. .
3. Kumarasamy, KK, Toleman, MA, Walsh, TR, Bagaria, J, Butt, F, Balakrishnan, R, et al. Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet Infect Dis. 2010;10: 9 597–602. .
4. Anzellotti, A, Farrell, N. Zinc metalloproteins as medicinal targets. Chem Soc Rev. 2008;37: 8 1629–1651. .
5. Fischbach, MA, Walsh, CT. Antibiotics for emerging pathogens. Science. 2009;325: 5944 1089–1093. .
6. Fisher, JF, Meroueh, SO, Mobashery, S. Bacterial resistance to beta-lactam antibiotics: compelling opportunism, compelling opportunity. Chem Rev. 2005;105: 2 395–424. .
7. Bush, K, Jacoby, GA. Updated functional classification of {beta}-lactamases. Antimicrob Agents Chemother. 2010;54: 3 969–976. .
8. Crowder, MW, Spencer, J, Vila, AJ. Metallo-beta-lactamases: novel weaponry for antibiotic resistance in bacteria. Acc Chem Res. 2006;39: 10 721–728. .
9. Garrity, JD, Carenbauer, AL, Herron, LR, Crowder, MW. Metal binding Asp-120 in metallo-beta-lactamase L1 from Stenotrophomonas maltophilia plays a crucial role in catalysis. J Biol Chem. 2004;279: 2 920–927. .
10. Hu, Z, Spadafora, LJ, Hajdin, CE, Bennett, B, Crowder, MW. Structure and mechanism of copper- and nickel-substituted analogues of metallo-beta-lactamase L1. Biochemistry. 2009;48: 13 2981–2989. .
11. Carenbauer, AL, Garrity, JD, Periyannan, G, Yates, RB, Crowder, MW. 2002 Probing substrate binding to metallo-beta-lactamase L1 from Stenotrophomonas maltophilia by using site-directed mutagenesis. BMC Biochem. 3:4–16. .
12. Crowder, MW, Walsh, TR, Banovic, L, Pettit, M, Spencer, J. Overexpression, purification, and characterization of the cloned metallo-beta-lactamase L1 from Stenotrophomonas maltophilia. Antimicrob Agents Chemother. 1998;42: 4 921–926.
13. LeBlond, C, Wang, J, Larsen, RD, Orella, CJ, Forman, AL, Landau, RN, et al. Reaction calorimetry as an in situ kinetic tool for characterizing complex reactions. Thermochim Acta. 1996;289: 2 189–207. .
14. Kong, W, Li, Z, Xiao, X, Zhao, Y, Zhang, P. Activity of berberine on Shigella dysenteriae investigated by microcalorimetry and multivariate analysis. J Therm Anal Calorim. 2010;102: 1 331–336. .
15. Zhao Y , Wang J, Shan L, Li R, Yan D, Xiao X. Activity of ginsenoside Rh on the growth of mice splenic lymphocytes investigated by microcalorimetry and factor analysis. J Therm Anal Calorim. 2010. .
16. Dragoi, B, Rakic, V, Dumitriu, E, Auroux, A. Adsorption of organic pollutants over microporous solids investigated by microcalorimetry techniques. J Therm Anal Calorim. 2010;99: 3 733–740. .
17. Zhao, Y, Yan, D, Wang, J, Zhang, P, Xiao, X. Anti-fungal effect of berberine on Candida albicans by microcalorimetry with correspondence analysis. J Therm Anal Calorim. 2010;102: 1 49–55. .
18. Wang, J, Cheng, D, Zeng, N, Xia, H, Fu, Y, Yan, D, et al. Application of microcalorimetry and principal component analysis. J Therm Anal Calorim. 2010;102: 1 137–142. .
19. Yang, L, Sun, L, Xu, F, Zhang, J, Zhao, J, Zhao, Z. Inhibitory study of two cephalosporins on E. coli by microcalorimetry. J Therm Anal Calorim. 2010;100: 2 589–592. .
20. Lago N , Legido J, Paz Andrade M, Arias I, Casás L. Microcalorimetric study on the growth and metabolism of Pseudomonas aeruginosa. J Therm Anal Calorim. 2010. .
21. López-Fonseca, R, Landa, I, Elizundia, U, Gutiérrez-Ortiz, MA, González-Velasco, JR. Thermokinetic modeling of the combustion of carbonaceous particulate matter. Combust Flame. 2006;144: 1–2 398–406. .
22. Völker, S, Rieckmann, T. Thermokinetic investigation of cellulose pyrolysis-impact of initial and final mass on kinetic results. J Anal Appl Pyrolysis. 2002;62: 2 165–177. .
23. Illeková, E, Svec, P, Miglierini, M. Thermokinetic analysis of the multistep crystallization of a NANOPERM-type ribbon. J Non-Cryst Solids. 2007;353: 32–40 3342–3347. .
24. Bouchoux, G, Buisson, DA. Gas phase basicity of X(CH2)3Y(X, Y=OH, NH2) by the thermokinetic method. Int J Mass Spectrom. 2006;249–250:412–419.
25. Ji, M, Liu, M, Gao, S, Shi, Q. A new microcalorimeter for measuring thermal effects. Instrum Sci Technol. 2001;29: 1 53–57. .
26. Marthada, V. The enthalpy of solution of SRM 1655 (KCl) in H2O. J Res NBS Standards. 1980;85: 6 467–474.
27. Hu, Z, Periyannan, G, Bennett, B, Crowder, MW. Role of the Zn1 and Zn2 sites in metallo-beta-lactamase L1. J Am Chem Soc. 2008;130: 43 14207–14216. .
28. Gao, S, Chen, S, Hu, R, Li, H, Shi, Q. Derivation and application of thermodynamic equations. Chin J Inorg Chem. 2002;18: 4 362–366.
29. Liu, J-S, Zeng, X-C, Tian, A-M, Deng, Y. Application of a reduced-extent method to thermokinetic studies of enzyme-catalyzed reactions. Thermochim Acta. 1995;253:275–283. .