View More View Less
  • 1 Department of Chemistry, Centre of Advanced Study, Faculty of Science, Banaras Hindu University, Varanasi 221 005, India
Restricted access

Abstract

Solid–liquid phase equilibrium data of three binary organic systems, namely, 3-hydroxybenzaldehyde (HB)—4-bromo-2-nitroanilne (BNA), benzoin (BN)—resorcinol (RC) and urea (U)—1,3-dinitrobenzene (DNB), were studied by the thaw–melt method. While the former two systems show the formation of simple eutectic, the third system shows the formation of a monotectic and a eutectic with a large immiscibility region where two immiscible liquid phases are in equilibrium with a liquid of single phase. Growth kinetics of the pure components, the monotectic and the eutectics, studied by measuring the rate of movement (v) of solid–liquid interface in a thin U-tube at different undercoolings (ΔT) suggests the applicability of the Hillig–Turnbull’s equation: v = uT)n, where v and n are the constants depending on the nature of the materials involved. The thermal properties of materials such as heat of mixing, entropy of fusion, roughness parameter, interfacial energy, and excess thermodynamic functions were computed from the enthalpy of fusion values, determined by differential scanning calorimeter (Mettler DSC-4000) system. The role of solid–liquid interfacial energy on morphologic change of monotectic growth has also been discussed. The microstructures of monotectic and eutectics were taken which showed lamellar and federal features.

  • 1. Herlach, DM, Cochrane, RF, Egry, I, Fecht, HJ, Greer, AL. Containerless processing in the study of metallic melts and their solidification. Int Mater Rev. 1993;38:273347.

    • Search Google Scholar
    • Export Citation
  • 2. Predel, B. Constitution and thermodynamics of monotectic alloys: a survey. J Phase Equilibr. 1997;18: 4 327337. .

  • 3. Trivedi, R, Kurz, W. Dendritic growth. Int Mater Rev. 1994;39: 2 4974.

  • 4. Majumdar, B, Chattopadhyay, K. The Rayleigh instability and the origin of rows of droplets in the monotectic microstructure of zinc–bismuth alloys. Met Trans A. 1996;27: A 20532057.

    • Search Google Scholar
    • Export Citation
  • 5. Ji, H-Z, Meng, X-C, Zhao, H-K. (Solid+liquid) equilibrium of (4-chloro-2-benzofuran-1,3-dione+5-chloro-2-benzofuran-1,3-dione). J Chem Eng Data. 2010;55:25902593. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6. Gupta P , Agrawal T, Das SS, Singh NB. Solvent free reactions, Reactions of nitrophenols in 8-hydroxyquinoline–benzoic acid eutectic melt. J Therm Anal Calorim. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7. Fu, J, Rice, JW, Suuberg, EM. 2010 Phase behavior and vapor pressures of the pyrene+9,10-dibromoanthracene system. Fluid Phase Equilibria. 298:219224. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8. Peters, CA, Wammer, KH, Knightes, CD. Multicomponent NAPL solidification thermodynamics. Transp Porous Media. 2000;38:5777. .

  • 9. Rice, JW, Suuberg, EM. Thermodynamic study of (anthracene+aenzo[a]pyrene) solid mixtures. J Chem Thermodyn. 2010;42:13561360. .

  • 10. Farges, JP. Organic conductors. New York: Marcel Dekker Inc.; 1994.

  • 11. Gunter, P. Nonlinear optical effects and materials. Berlin: Springer; 2000 540.

  • 12. Singh, NB, Henningsen, T, Hopkins, RH, Mazelsky, R, Hamacher, RD, Supertzi, EP, Hopkins, FK, Zelmon, DE, Singh, OP. Nonlinear optical characteristics of binary organic system. J Cryst Growth. 1993;128:976980. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13. Dwivedi, Y, Kant, S, Rai, RN, Rai, SB. 2010 Efficient white light generation from 2,3-diphenyl-1,2-dihydro-quinoxaline complex. Appl Phys B. 101:639642. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14. Choi, J, Aggarwal, MD, Wang, WS, Penn, BG, Frazier, DO. 1998 Binary organic single crystals for nonlinear optical application. J Korean Phys Soc. 32:S433S435.

    • Search Google Scholar
    • Export Citation
  • 15. Rai, RN, Lan, CW. Crystal structure and properties of new organic nonlinear optical material. J Mater Res. 2002;17: 7 15871591. .

  • 16. Derby, B, Favier, JJ. 1983 A criterion for the determination of monotectic structure. Acta Met. 7:11231130. .

  • 17. Ecker, A, Frazier, DO, Alexander, JID. 1989 Fluid flow in solidifying monotectic alloys. Metall Trans. 20A:25172527.

  • 18. Dean, JA. Lange’s handbook of chemistry. New York: McGraw-Hill; 1985.

  • 19. Sharma, KP, Rai, RN. Novel organic monotectic alloy and its thermal, physicochemical, and microstructural studies. J Mater Sci. 2011;46:15511556. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20. Rai, RN. Phase diagram, optical, nonlinear optical, and physicochemical studies of the organic monotectic system: pentachloropyridine-succinonotrile. J Mater Res. 2004;19: 5 13481355. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21. Rai, US, Rai, RN. Physical chemistry of organic eutectic and monotectic: hexamethylbenzene-succinonitrile system. Chem Mater. 1999;11: 11 30313036. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22. Kant, S, Rai, RN. Solid–liquid equilibrium and thermochemical studies of organic analogue of metal-nonmetal system: succinonitrile-pentachloronitrobenzene. Thermochim Acta. 2011;512:4954. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23. Rai, US, Rai, RN. Physical chemistry of organic eutectics. J Therm Anal Calorim. 1998;53:883893. .

  • 24. Rai RN , Mudunuri SR, Reddi RSB, Satuluri VSA Kumar, Ganeshmoorthy S Gupta PK. Crystal growth and nonlinear optical studies of m-dinitrobenzene doped urea. J Cryst Growth. (2011). .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25. Hillig, WB, Turnbull, D. Theory of Crystal growth in undercooled pure liquids. J Chem Phys. 1956;24:914 .

  • 26. Winegard, WC, Majka, S, Thall, BM, Chalmers, B. 1951 Eutectic solidification in metals. Can J Chem. 29:320327. .

  • 27. Rai, RN, Rai, US. 2000 Solid–liquid equilibrium and thermochemical properties of organic eutectic in a monotectic system. Thermochim Acta. 363:2328. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28. Rai, US, Rai, RN. Physical chemistry of the organic analog of metal–metal eutectic and monotectic alloys. J Cryst Growth. 1998;191:234242. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29. Singh, N, Singh Narsingh, B, Rai, US, Singh, OP. 1985 Structure of eutectic melts; binding organic systems. Thermochim Acta. 95:291293. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30. Rai, RN, Rai, US, Varma, KBR. 2002 Thermal, miscibility gap and microstructural studies of organic analog of metal-nonmetal system: p-dibromobenzene-succinonitrile. Thermochim Acta. 387:101107. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31. Eustathopoulos, N, Nicholas, MG, Drevet, B. Wettability at high temperatures. Pergamon, Oxford: Pergamon Materials Series; 1999.

  • 32. Christian, JW. The theory of phase transformation in metals and alloys. Oxford: Pergamon Press; 1965 992.

  • 33. Kaukler, WF, Frazier, DO. 1985 Observations of a monotectic solidification interface morphology. J Cryst Growth. 71:340345. .

  • 34. Singh, NB, Rai, US, Singh, OP. 1985 Chemistry of eutectic and monotectic; phenanthrene-succinonitrile system. J Cryst Growth. 71:353360. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35. Hunt, JD, Jackson, KA. 1966 Binary eutectic solidification. Trans Met Soc AIME. 236:843852.

  • 36. Chadwick, GA. 1965 Monotectic solidification. Br J Appl Phys. 16:10951097. .

  • 37. Cahn, JW. 1977 Critical point wetting. J Chem Phys. 66:36673672. .