View More View Less
  • 1 Institute of Physics of Fibrous Soft Matters, Donghua University, Shanghai 200051, China
  • | 2 Department of Biological and Agricultural Engineering, University of California, Davis, CA, 95616, USA
Restricted access

Abstract

In this article, the authors first introduced a theoretical model dealing with unsteady-state heat conduction in porous fabric to assess the effects due to local convection during the testing. A few important issues are analyzed including the criterion for local thermal equilibrium in the fibrous materials and the confidence time region (tmintmax) during measuring process. The influence due to different heat source capacities can be ignored if the measuring time is greater than the minimum time duration tmin, yet the heat loss via outside surface becomes negligible if the testing duration is below the maximum allowable value tmax. Accordingly an apparatus that can simultaneously measure two thermophysical properties (the thermal conductivity k and thermal diffusivity a) of fibrous materials is developed in this study, which then leads to the determination of the volumetric capacity via ρC = k/a. In order to minimize the influence of potential local micro heat convection and the contact resistance during heat transfer, some background, and stacking materials are adopted in the apparatus. The error range of the apparatus is estimated empirically based on the data from measuring some Perspex samples. Finally four kinds of polyester nonwoven fabrics with different porosities are tested using the device and the data analyzed and compared with theoretical predictions.

  • 1. Pan, N. Modified analysis of the microstructural characteristics of general fiber assemblies. Text Res J. 1993;63: 6 336345. .

  • 2. Carnaby, GA, Pan, N. Theory of the compression hysteresis of fibrous assemblies. Text Res J. 1989;59: 5 275284. .

  • 3. Wang, M, Pan, N. Predictions of effective physical properties of complex multiphase materials. Mater Sci Eng R. 2008;63: 1 130. .

  • 4. Zhu F , Li K. Determining effective thermal conductivity of fabrics by using fractal method. Int J Thermophys. 2010; 18.

  • 5. Yang, H, Zhu, S, Pan, N. Studying the mechanisms of titanium dioxide as ultraviolet-blocking additive for films and fabrics by an improved scheme. J Appl Polym Sci. 2004;92: 5 32013210. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6. Yang, H, Zhu, S, Pan, N. On the Kubelka-Munk single-constant/two-constant theories. Text Res J. 2010;80: 3 263270. .

  • 7. Xin, W, Weilin, X, Wenbin, L, Weigang, C. Study on the electrical resistance of textiles under wet conditions. Text Res J. 2009;79: 8 753760.

    • Search Google Scholar
    • Export Citation
  • 8. Pan, N, He, J, Yu, J. Fibrous Materials as Soft Matter. Text Res J. 2007;77: 4 205213. .

  • 9. Wang, M, Pan, N. Modeling and prediction of the effective thermal conductivity of random open-cell porous foams. Int J Heat Mass Trans. 2008;51: 5–6 13251331. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10. Zhmakin, LI, Kozyrev, IV, Kirokosyan, KA. Study of the thermal conductivity of textiles for firefighters’ uniforms. Fibre Chem. 2006;38: 2 118120. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11. Vrana, T, Gudmundsson, K. Comparison of fibrous insulations—cellulose and stone wool in terms of moisture properties resulting from condensation and ice formation. Construct Build Mater. 2010;24: 7 11511157. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12. Amiri, A, Vafai, K. Analysis of dispersion effects and non-thermal equilibrium, non-Darcian, variable porosity incompressible flow through porous media. Int J Heat Mass Trans. 1994;37: 6 939954. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13. Amiri, A, Vafai, K. Transient analysis of incompressible flow through a packed bed. Int J Heat Mass Trans. 1998;41: 24 42594279. .

  • 14. Minkowycz, WJ, Haji-Sheikh, A, Vafai, K. On departure from local thermal equilibrium in porous media due to a rapidly changing heat source: the Sparrow number. Int J Heat Mass Trans. 1999;42: 18 33733385. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15. Tzou, DY. A unified field approach for heat conduction from macro- to micro-scales. J Heat Trans. 1995;117: 1 816. .

  • 16. Vadasz, P. Explicit conditions for local thermal equilibrium in porous media heat conduction. Transp Porous Med. 2005;59: 3 341355. .

  • 17. Vadasz, P. On the paradox of heat conduction in porous media subject to lack of local thermal equilibrium. Int J Heat Mass Trans. 2007;50: 21–22 41314140. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18. Wang, L, Wei, X. Equivalence between dual-phase-lagging and two-phase-system heat conduction processes. Int J Heat Mass Trans. 2008;51: 7–8 17511756. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19. Salmon, D. Thermal conductivity of insulations using guarded hot plates, including recent developments and sources of reference materials. Meas Sci Technol. 2001;12: 12 R89R98. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20. Zhu, F, Zhang, W. Measuring the thermal conductive property of protective fabrics to radiant heat exposure. J Ind Text. 2007;37: 2 175186. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21. Vozár, L. A computer-controlled apparatus for thermal conductivity measurement by the transient hot wire method. J Therm Anal Calorim. 1996;46: 2 495505. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22. Soliman, L, Wasfi, M, Hendia, T. Thermal properties of polycrystalline ZnIn2Se4. J Therm Anal Calorim. 2000;59: 3 971976. .

  • 23. Shinzato, K, Baba, T. A laser flash apparatus for thermal diffusivity and specific heat capacity measurements. J Therm Anal Calorim. 2001;64: 1 413422. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24. Gaal, P, Thermitus, MA, Stroe, D. Thermal conductivity measurements using the flash method. J Therm Anal Calorim. 2004;78: 1 185189. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25. Jirsak, O, Gok, T, Ozipek, B, Pan, N. Comparing dynamic and static methods for measuring thermal conductive properties of textiles. Text Res J. 1998;68: 1 4756. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26. C177-04 AS. Standard test method for steady-state heat flux measurements and thermal transmission properties by means of the guarded-hot-plate apparatus, Philadelphia: ASTM; 2004.

    • Search Google Scholar
    • Export Citation
  • 27. Zhao, CY, Lu, TJ, Hodson, HP, Jackson, JD. The temperature dependence of effective thermal conductivity of open-celled steel alloy foams. Mater Sci Eng. 2004;367:123131. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28. Hammerschmidt, U. A new pulse hot strip sensor for measuring thermal conductivity and thermal diffusivity of solids. Int J Thermophys. 2003;24: 3 675 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29. Kubičár, L, Bohac, V. A step-wise method for measuring thermophysical parameters of materials. Meas Sci Technol. 2000;11:252258. .

  • 30. Lei Z , Zhu SK, Pan N. Transient methods of thermal properties measurement on fibrous materials. J Heat Trans Trans ASME. 2010;132(3). .

  • 31. Lei, Z, Zhu, S, Pan, N. Determination of sample size for step-wise transient thermal tests. Polym Test. 2009;28: 3 307314. .

  • 32. Glatzmaier, GC, Fred Ramirez, W. Use of volume averaging for the modeling of thermal properties of porous materials. Chem Eng Sci. 1988;43: 12 31573169. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33. Čulík, F, Baník, I. Determination of temperature field created by planar heat source in a solid body consisting of three parts in mutual thermal contact. Int J Therm Sci. 2009;48: 1 204208. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34. Tye, RP, Kubicar, L, Lockmuller, N. The development of a standard for contact transient methods of measurement of thermophysical properties. Int J Thermophys. 2005;26: 6 19171938. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35. Nnanna, AGA, Haji-Sheikh, A, Harris, KT. Experimental study of non-fourier thermal response in porous media. J Porous Med. 2005;8: 1 3144. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36. Holman, JP. Heat transfer. New York: McGraw-Hill; 2009.

  • 37. Weidong, Y, Caiyuan, C. Textile physics. Shanghai: Donghua University; 2002.

  • 38. Patanaik, A, Anandjiwala, R. Some studies on water permeability of nonwoven fabrics. Text Res J. 2009;79: 2 147153. .

  • 39. Kubicar L , Bohac V, Vretenar V, editors. Thermophysical parameters of phenolic foam measured by the pulse transient method: methodology for low thermal conductivity materials the 27th international thermal conductivity conference (ITCC). Lancaster: DEStech Publication; 2005.

    • Search Google Scholar
    • Export Citation
  • 40. Kim, KJ, King, WP. Thermal conduction between a heated microcantilever and a surrounding air environment. Appl Therm Eng. 2009;29: 8–9 16311641. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41. Matweb . In: Overview of materials for polyethylene terephthalate (PET), unreinforced. 3, 2. 2010. http://www.matweb.com. Accessed 06 July 2010.

    • Search Google Scholar
    • Export Citation

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)