View More View Less
  • 1 Department of Physics, Bhavnagar University, Bhavnagar 364022, India
Restricted access

Abstract

A comprehensive first principle study of thermodynamic properties of MgN is reported within the density functional theory scheme. The ground state properties such as lattice constant, Bulk modulus etc. of MgN in rock-salt (RS) phase have been determined. The thermodynamical properties have been analyzed in the light of phonon density of states of MgN and its constituent atoms. The variation of lattice-specific heat with temperature obeys the classical Dulong–Petit’s law at high temperature while at low temperature it obeys Debye T3 law. The phonon spectrum shows the presence of all positive phonons and zero phonon density of states at zero energy confirming a dynamically stabilized structure of MgN in RS phase.

  • 1. Zebarjadi, M, Bian, Z, Singh, R, Shakourie, A, Wortman, R, Rawat, V, Sands, T. Thermoelectric transport in a ZrN/ScN super lattice. J Electron Mater. 2009;38:960963. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2. Rawat, V, Koh, Y, Cahill, D, Sands, T. Thermal conductivity of (Zr, W)N/ScN metal/semiconductor multilayers and superlattices. J Appl Phys. 2009;105:02490910249096. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3. IAEA-TECDOC-1374, Development status of metallic, dispersion and non-oxide advanced and alternative fuels for power and research reactors. IAEA, 2003.

    • Search Google Scholar
    • Export Citation
  • 4. Rogozkin, BD, Stepennova, NM, Proshkin, AA. Mononitride fuel for fast reactors. Atomic Energy. 2003;95: 3 624636. .

  • 5. Burghartz, M, Ledergerber, G, Hein, H, van der Laan, RR, Konings, RJM. Some aspects of the use of ZrN as an inert matrix for actinide fuels. J Nucl Mater. 2001;288:233236. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6. Rogozkin, BD, Stepennova, NM, Bergman, GA, Proshkin, AA. Thermochemical stability, radiation testing, fabrication, and reprocessing of mononitride fuel. Atomic Energy. 2003;95: 6 835844. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7. Blank, H. Non-oxide ceramic nuclear fuels Frost, BRT, eds. Materials science and technology, vol 10A. Weinheim: Wiley; 2005 191363.

    • Search Google Scholar
    • Export Citation
  • 8. Ogawa T , Crawford D, Konings RJM, Pillon S, Schram RPC, Verwerft M, Wallenius J. In: Proceedings of the GLOBAL 2005, No. 316, Tsukuba, Japan, October 2005, p. 913.

    • Search Google Scholar
    • Export Citation
  • 9. Basini, V, Ottaviani, JP, Richaud, JC, Streit, M, Ingold, F. Experimental assessment of thermophysical properties of (Pu, Zr)N. J Nucl Mater. 2005;344:186190. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10. Ciriello, A, Rodinella, VV, Staicu, D, Somers, J. Thermophysical characterization of nitrides inert matrices: preliminary results on zirconium nitride. J Nucl Mater. 2007;371:129133. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11. Kleykamp, H. Selection of materials as diluents for burning of plutonium fuels in nuclear reactors. J Nucl Mater. 1999;275:111. .

  • 12. Saha, B, Acharya, J, Sands, T, Waghmare, U. Electronic structure, phonons, and thermal properties of ScN, ZrN, and HfN: a first-principles study. J Appl Phys. 2010;107:033715 1033715 9. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13. Droghetti, A, Baadji, N, Sanvito, S. MgN: a possible material for spintronic applications. Phys Rev B. 2009;80:235310 4235310 6. .

  • 14. Gonze, X, Lee, C. Dynamical matrices, Born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory. Phys Rev B. 1997;55:1035510368. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15. Baroni, S, de Gironcoli, S, dal Corso, A, Giannozzi, P. Phonons and related crystal properties from density-functional perturbation theory. Rev Mod Phys. 2001;73:515562. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16. Koleżyński, A, Malecki, A. First principles studies of thermal decomposition of anhydrous zinc oxalate. J Therm Anal Calorim. 2009;96: 2 645651. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17. Koleżyński, A, Malecki, A. Theoretical approach to thermal decomposition process of chosen anhydrous oxalates. J Therm Anal Calorim. 2009;97: 1 7783. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18. Perdew, JP, Burke, K, Ernzerhof, M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77:38653868. .

  • 19. Raybaud, P, Kresse, G, Hafner, J, Toulhoat, H. Ab initio density functional studies of transition-metal sulphides: I. crystal structure and cohesive properties. J Phys Condens Matter. 1997;9:1108511106. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20. Troullier, N, Martin, JL. Efficient pseudopotentials for plane-wave calculations. Phys Rev B. 1991;43:19932006. .

  • 21. Monhorst, HJ, Pack, JD. Special points for Brillouin-zone integrations. Phys Rev B. 1976;13:51885192. .

  • 22. Jha, PK. Phonon spectra and vibrational mode instability of MgCNi3. Phys Rev B. 2005;72:214502 .

  • 23. Jha, PK, Sanyal, SP. A lattice dynamical study of the role of pressure on Raman modes in high-Tc HgBa2CuO4. Phys C. 1996;261:259262. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24. Jha, PK, Sanyal, SP. Phonon spectrum, lattice specific heat of the HgBa2CuO4 high-temperature superconductor. Phys C. 1996;271:6 .

  • 25. Lee, C, Gonze, X. Ab initio calculation of the thermodynamic properties and atomic temperature factors of SiO2 α-quartz and stishovite. Phys Rev B. 1995;51:86108613. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26. Murnaghan, FD. The compressibility of media under extreme pressures. Proc Natl Acad Sci. 1944;30: 9 244247. .