We report ab initio calculations of the thermal properties for transition metal nitrides, hafnium and zirconium nitride at ambient and high pressures. The assessment of thermodynamical properties like lattice specific heat, vibrational energy, internal energy and entropy for two nitrides has been carried out. The basic calculations of ingredient phonon density of states for the determination of thermal properties have been done using density functional perturbation theory including external perturbations like strains and electric fields in periodic systems. The ground state properties such as equilibrium lattice constants and bulk modulus obtained for two nitrides are in good agreement with the available experimental value. The calculated pressure variation of the phonon density of states shows trend similar to the experimental pressure dependent Raman spectra. The lattice specific heat, internal energy, entropy and Helmholtz energy increases with pressure.
1. Wakasugi, K, Tokunaga Sumita, MT, Kubota, H, Nagata, M, Honda, Y. Superconductivity of reactivity sputtered TaN film for ULSI process. Physica B. 1997;239:29–31. .
2. Rawat, V, Koh, Y, Cahill, D, Sands, T. Thermal conductivity of (Zr, W)N/ScN metal/semiconductor multilayers and superlattices. J Appl Phys. 2009;105:024909 .
3. McMillan, PF. Materials science: disciplines bound by pressure. Nature. 1998;391:539–540. .
4. Christensen, AN, Kress, W, Miura, M, Lehner, N. Phonon anomalies in transition-metal nitrides: HfN. Phys Rev B. 1983;28:977–981. .
5. Christensen, AN, Dietrich, OW, Kress, W, Teuchert, WD. Phonon anomalies in transition-metal nitrides: ZrN. Phys Rev B. 1979;19:5699–5703. .
6. Monkhorst, HJ, Pack, JD. Special points for Brillouin-zone integrations. Phys Rev B. 1976;13:5188–5192. .
7. Kittel C . Introduction to solid state physics. 8th ed. New York/Oxford: Wiley/Oxford University Press; 2001.
8. Lee, C, Gonze, X. Ab initio calculation of the thermodynamic properties, atomic temperature factors of SiO2 α-quartz and stishovite. Phys Rev B. 1995;51:8610–8613. .
9. Maksimov, EG, Wang, SQ, Magnitskaya, MV, Ebert, SV. Effect of high pressure on the phonon spectra and superconductivity in ZrN and HfN. Supercond Sci Technol. 2009;22:075004 .
10. Ciriello, A, Rondinella, VV, Staicu, D, Somers, J, Benes, O, Jardin, R, Bouëxière, D, Wastin, F, Colineau, E. Thermophysical characterization of ZrN and (Zr, Pu)N. J Alloys Compd. 2009;473:265–271. .
11. Stampfl, C, Mannstadt, W, Asahi, R, Freeman, AJ. Electronic structure and physical properties of early transition metal mononitrides: Density-functional theory LDA, GGA, and screened-exchange LDA FLAPW calculations. Phys Rev B. 2001;63:155106–155116. .
12. Isaev, EI, Simak, SI, Abrikosov, IA, Ahuja, R, Vekilov, YK, Katsnelson, MI, Lichtenstein, AI, Johansson, B. Phonon related properties of transition metals, their carbides, and nitrides: a first-principles study. J Appl Phys. 2007;123519:101.
13. Harbeke, G, Meier, E, Dismukes, JP. Electron effective mass in ScN. Opt Commun. 1972;4:335 .
14. Bivas, Saha, Jagaran, Acharya, Sands Timothy, D, Waghmare Umesh, V. Electronic structure, phonons, and thermal properties of ScN, ZrN, and HfN: a first-principles study. J Appl Phys. 2010;107:033715–033722. .
15. Pearson WB . Structure Reports, Utretch: International union of crystallography; 1993).
16. Chen, XJ, Struzhkin, VV, Wu, Z, Somayazulu, M, Qian, J, Kung, S, Christensen, A, Zhao, Y, Cohen, RE, Mao, H, Hemley, R. Hard superconducting nitrides Pnas. 2005;102:3198–3201.