View More View Less
  • 1 Department of Physics, Bhavnagar University, Bhavnagar 364022, India
  • | 2 Faculty of Technology and Engineering, Applied Physics Department, The M. S. University of Baroda, Vadodara 390001, India
Restricted access

Abstract

In this article, we have studied the size effect on glass transition and Kauzmann temperature of spherical TiO2 nanoparticles using Arrhenius relation and Lindemann’s criteria under their dynamic limit. The melting point of nanoparticles decreases with decrease in size of the nanoparticles. The glass transition temperature and Kauzmann temperature are analyzed through the size effect on the melting temperature. The glass transition and Kauzmann temperatures decrease with the decrease in size of TiO2 nanoparticles.

  • 1. Ito, A, Shinkai, M, Honda, H, Kobayashi, T. Medical application of functionalized magnetic nanoparticles. J Biosci Bioeng. 2005;100:111. .

  • 2. Rout, CS, Raju, AR, Govindraj, A, Rao, CNR. Hydrogen sensors based on ZnO nanoparticles. Solid State Commun. 2006;138:136138. .

  • 3. Wang, X, Song, J, Liu, J, Wang, ZL. Direct-current nanogenerator driven by ultrasonic waves. Science. 2007;316:102105. .

  • 4. Martinez, CJ, Hockey, B, Montgomery, CB, Semancik, S. Porous tin oxide nanostructured microspheres for sensor applications. Langmuir. 2005;21:79377944. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5. Tjong, SC, Chen, H. Nanocrystalline materials and coatings. Mater Sci Eng R. 2004;45:18. .

  • 6. Meyers, MA, Mishra, A, Benson, DJ. Mechanical properties of nanocrystalline materials. Prog Mater Sci. 2006;51:427556. .

  • 7. Timp, G, eds. Nanotechnology. New York: AIP Press, Springer; 1999.

  • 8. Hoang, VV. The glass transition and thermodynamics of liquid and amorphous TiO2 nanoparticles. Nanotechnology. 2008;19:105706105719. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9. Jiang, Q, Yang, CC. Size effect on the phase stability of nanostructures. Curr Nanosci. 2008;4:179200. .

  • 10. Shi, FG. Size dependent thermal vibrations and melting in nanocrystals. J Mater Res. 1994;9:13071313. .

  • 11. Mishra, S, Gupta, SK, Jha, PK, Pratap, A. Study of dimension dependent diffusion coefficient of titanium dioxide nanoparticles. Mater Chem Phys. 2010;123:791794. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12. Dhurandhar, H, Lad, K, Pratap, A, Dey, GK. Gibbs free energy difference in bulk metallic glass forming alloys. Defect Diffus Forum. 2008;279:9196. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13. Ao, ZM, Zheng, WT, Jiang, Q. Size effects on the Kauzmann temperature and related thermodynamic parameters of Ag nanoparticles. Nanotechnology. 2007;18:255706255712. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14. Guisbiers, G, Buchaillot, L. Size and shape effects on creep and diffusion at the nanoscale. Nanotechnology. 2008;19:435701435707. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15. Gupta, SK, Talati, M, Jha, PK. Shape and size dependent melting point temperature of nanoparticles. Mater Sci Forum. 2008;570:132137. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16. Hoang, VV. Pressure-induced structural transition in amorphous TiO2 nanoparticles and in the bulk via molecular dynamics simulation. J Phys D Appl Phys. 2007;40:74547461. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17. Qi, WH. Size effect on melting temperature of nanosolids. Phys B. 2005;368:4650. .

  • 18. Turnbull, D, Fisher, JC. Rate of nucleation in condensed systems. J Chem Phys. 1949;17:7173. .

  • 19. Li, G, Boerio-Goater, J, Woodfield, B, Fand Li, L. Evidence of linear lattice expansion and covalency enhancement in rutile TiO2 nanocrystals. Appl Phys Lett. 2004;85:20592063. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20. Cooke, DJ, Parker, SC, Osguthorpe, DJ. Calculating the vibrational thermodynamic properties of bulk oxides using lattice dynamics and molecular dynamics. Phys Rev B. 2003;67:134306134309. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21. Smith, JS, Stevens, R, Liu, S, Li, G, Navrotsky, A, Boerio-Goates, J, Woodfield, BF. Heat capacities and thermodynamic functions of TiO2 anatase and rutile: analysis of phase stability. Am Miner. 2009;94:236243. .

    • Crossref
    • Search Google Scholar
    • Export Citation

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2021 0 4 7
Jul 2021 0 0 0
Aug 2021 0 0 0
Sep 2021 1 0 0
Oct 2021 0 0 0
Nov 2021 3 0 0
Dec 2021 0 0 0