In this article, we have studied the size effect on glass transition and Kauzmann temperature of spherical TiO2 nanoparticles using Arrhenius relation and Lindemann’s criteria under their dynamic limit. The melting point of nanoparticles decreases with decrease in size of the nanoparticles. The glass transition temperature and Kauzmann temperature are analyzed through the size effect on the melting temperature. The glass transition and Kauzmann temperatures decrease with the decrease in size of TiO2 nanoparticles.
1. Ito, A, Shinkai, M, Honda, H, Kobayashi, T. Medical application of functionalized magnetic nanoparticles. J Biosci Bioeng. 2005;100:1–11. .
2. Rout, CS, Raju, AR, Govindraj, A, Rao, CNR. Hydrogen sensors based on ZnO nanoparticles. Solid State Commun. 2006;138:136–138. .
3. Wang, X, Song, J, Liu, J, Wang, ZL. Direct-current nanogenerator driven by ultrasonic waves. Science. 2007;316:102–105. .
4. Martinez, CJ, Hockey, B, Montgomery, CB, Semancik, S. Porous tin oxide nanostructured microspheres for sensor applications. Langmuir. 2005;21:7937–7944. .
5. Tjong, SC, Chen, H. Nanocrystalline materials and coatings. Mater Sci Eng R. 2004;45:1–8. .
6. Meyers, MA, Mishra, A, Benson, DJ. Mechanical properties of nanocrystalline materials. Prog Mater Sci. 2006;51:427–556. .
7. Timp, G, eds. Nanotechnology. New York: AIP Press, Springer; 1999.
8. Hoang, VV. The glass transition and thermodynamics of liquid and amorphous TiO2 nanoparticles. Nanotechnology. 2008;19:105706–105719. .
9. Jiang, Q, Yang, CC. Size effect on the phase stability of nanostructures. Curr Nanosci. 2008;4:179–200. .
10. Shi, FG. Size dependent thermal vibrations and melting in nanocrystals. J Mater Res. 1994;9:1307–1313. .
11. Mishra, S, Gupta, SK, Jha, PK, Pratap, A. Study of dimension dependent diffusion coefficient of titanium dioxide nanoparticles. Mater Chem Phys. 2010;123:791–794. .
12. Dhurandhar, H, Lad, K, Pratap, A, Dey, GK. Gibbs free energy difference in bulk metallic glass forming alloys. Defect Diffus Forum. 2008;279:91–96. .
13. Ao, ZM, Zheng, WT, Jiang, Q. Size effects on the Kauzmann temperature and related thermodynamic parameters of Ag nanoparticles. Nanotechnology. 2007;18:255706–255712. .
14. Guisbiers, G, Buchaillot, L. Size and shape effects on creep and diffusion at the nanoscale. Nanotechnology. 2008;19:435701–435707. .
15. Gupta, SK, Talati, M, Jha, PK. Shape and size dependent melting point temperature of nanoparticles. Mater Sci Forum. 2008;570:132–137. .
16. Hoang, VV. Pressure-induced structural transition in amorphous TiO2 nanoparticles and in the bulk via molecular dynamics simulation. J Phys D Appl Phys. 2007;40:7454–7461. .
17. Qi, WH. Size effect on melting temperature of nanosolids. Phys B. 2005;368:46–50. .
18. Turnbull, D, Fisher, JC. Rate of nucleation in condensed systems. J Chem Phys. 1949;17:71–73. .
19. Li, G, Boerio-Goater, J, Woodfield, B, Fand Li, L. Evidence of linear lattice expansion and covalency enhancement in rutile TiO2 nanocrystals. Appl Phys Lett. 2004;85:2059–2063. .
20. Cooke, DJ, Parker, SC, Osguthorpe, DJ. Calculating the vibrational thermodynamic properties of bulk oxides using lattice dynamics and molecular dynamics. Phys Rev B. 2003;67:134306–134309. .
21. Smith, JS, Stevens, R, Liu, S, Li, G, Navrotsky, A, Boerio-Goates, J, Woodfield, BF. Heat capacities and thermodynamic functions of TiO2 anatase and rutile: analysis of phase stability. Am Miner. 2009;94:236–243. .