View More View Less
  • 1 Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160 014, India
Restricted access

Abstract

Thermal behavior of various synthesized transition metal surfactant complexes of the type [M(CH3COO)4]2−[C12H25NH3+]2 where M: Cu(II), Ni(II), Co(II) has been investigated using Thermogravimetric Analysis (TGA). It was found that pyrolytic decomposition occurs with melting in metal complexes, and that metal oxides remain as final products. The activation energy order obtained, ECu > ENi > ECo, could be explained on the basis of size of transition metal ion and metal ligand bond strength. In the course of our investigation on the decomposition of complexes, we carried out a comparative study of different measurement and calculation procedures for the thermal decomposition. A critical examination was made of the kinetic parameters of non-isothermal thermoanalytic rate measurement by means of several methods such as Coats–Redfern (CR), Horowitz–Metzger (HM), van Krevelen (vK), Madhusudanan–Krishnan–Ninan (MKN), and Wanjun–Yuwen–Hen–Cunxin (WYHC). The most appropriate method among these was determined for each decomposition step according to the least-squares linear regression. It was found that the results obtained using CR method differ considerably from HM method, as the former method involves a lot of approximations and is not much reliable. The application of thermoanalytic techniques to the investigation of rate processes has also been discussed.

  • 1. Donnio, B. 2002 Lyotropic metallomesogens. Curr Opin Colloid Interface Sci. 7:371394. .

  • 2. Torres, GR, Agricole, B, Mingotaud, C, Ravaine, S, Delhaes, P. Hybrid organic–inorganic langmuir–blodgett films starting from colloidal prussian blue solution. Langmuir. 2003;19:46884693. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3. Jervis HB , Raimondi ME, Raja R, Maschmeyer T, Seddon JM, Bruce DW. Templating mesoporous silicates on surfactant ruthenium complexes: a direct approach to heterogeneous catalysts. Chem Comm. 1999; 203132.

    • Search Google Scholar
    • Export Citation
  • 4. Danks, MJ, Jervis, HB, Notwotny, M, Zhou, W, Maschmeyer, TA, Bruce, DW. High-activity heterogeneous catalysts prepared in one step from the mesophases of metallosurfactants. Catal Lett. 2002;82:9598. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5. Chu, BWK, Yam, VWW. Synthesis, characterization, langmuir–blodgett film-forming properties, and second-harmonic-generation studies of Ruthenium(II) complexes with long hydrocarbon chains. Inorg Chem. 2001;40:33243329. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6. Kimura, E, Hashimoto, H, Koike, T. Hydrolysis of lipophilic esters catalyzed by a zinc(ii) complex of a long alkyl-pendant macrocyclic tetraamine in micellar solution. J Am Chem Soc. 1996;118:1096310970. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7. Hay, RW, Govan, N, Parchment, KE. A metallomicelle catalysed hydrolysis of a phosphate triester, a phosphonate diester and o-isopropyl methylfluorophosphonate. Inorg Chem Commun. 1998;1:228231. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8. Weijnen, JGJ, Koudijs, A, Engbersen, JFJJ. Carboxylic and phosphate ester hydrolysis catalysed by bivalent zinc and copper metallosurfactants. Chem Soc Perkin Trans 2. 1991;8:11211126. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9. Manabe, K, Mori, Y, Wakabayashi, T, Nagayama, S, Kobayashi, S. Organic synthesis inside particles in water:# lewis acid-surfactant-combined catalysts for organic reactions in water using colloidal dispersions as reaction media. J Am Chem Soc. 2000;122:72027207. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10. Goedheijt, MS, Hanson, BE, Reek, JNH, Kamer, PCJ, van Leeuwen, PWNM. Accelerated biphasic hydroformylation by vesicle formation of amphiphilic diphosphines. J Am Chem Soc. 2000;122:16501657. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11. Takahashi, PM, Frem, RCG, Netto, AVG, Mauro, AE, Matos, JRM. 2007 Thermal studies on nickel(II) 4-iodopyrazole complexes. J Therm Anal Cal. 87:797800. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12. Sahin, O, Tas, E, Dolas, H. 2007 Kinetic analysis of thermal decomposition of some co-complexes of three unsymmetrical vic-dioximes ligands. J Therm Anal Cal. 89:123131. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13. Hillier, J, Bezzant, T, Fletcher, TH. Improved method for the determination of kinetic parameters from non-isothermal thermogravimetric analysis (TGA) data. Energy Fuels. 2010;24:28412847. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14. Madarasz, J, Pokol, G, Gal, S. 1994 Application of non-linear regression methods for the estimation of common kinetic parameters from several thermoanalytical curves. J Therm Anal Cal. 42:539550. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15. Lapides, IL. 1997 Evaluation of kinetic parameters from a single TG curve based on the similarity theory and process symmetry. J Therm Anal. 50:269277. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16. Badawi, AM, Mohamed, AS, Mohamed, MZ, Khowdairy, MM, Mekawi, MA. 2007 Surface and biological activity of some novel cationic surfactants. J Surfact Deterg. 10:243255. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17. Ouriques, HRC, Trindade, MFS, Conceição, MM, Prasad, S, Filho, PFA, Souza, AG. 2004 Kinetics of decomposition of alkylammonium salts. J Therm Anal Cal. 75:569 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18. Obaid, AY, Alyoubi, AO, Samarkandy, AA, Al-Thabaiti, SA, Al-Juaid, SS, El-Bellihi, AA, Deifallah El, HM. 2000 Kinetics of thermal decomposition of copper(II) acetate monohydrate. J Therm Anal Cal. 61:985994. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19. Chen, D, Gao, X, Dollimore, D. Computer programs for kinetic analysis of non-isothermal thermogravimetric data. Analytical Instrumentation. 1992;20:137152. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20. Doyle, CD. 1965 Series approximations to the equation of thermogravimetric data. Nature. 207:290291. .

  • 21. Coats, AW, Redfern, JP. 1964 Kinetic parameters from thermogravimetric data. Nature. 201:6869. .

  • 22. Horowitz, HH, Metzger, G. A new analysis of thermogravimetric traces. Anal Chem. 1963;35:14641468. .

  • 23. Madhusudanan, PM, Krishnan, K, Ninan, KN. 1993 New equations for kinetic analysis of non-isothermal reactions. Thermochim Acta. 22:1321. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24. van Krevelen, DW, Van Herden, C, Huntjons, FJ. 1951 Physiochemical aspects of the pyrolysis of coal and related organic compounds. Fuel. 30:253261.

    • Search Google Scholar
    • Export Citation
  • 25. Wanjun, T, Yuwen, L, Hen, Z, Cunxin, W. 2003 New temperature integral approximate formula for non-isothermal kinetic analysis. J Therm Anal Cal. 74:309315. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26. Sekerci, M, Yakuphanoglu, F. 2004 Thermal analysis study of some transition metal complexes by TG and DSC methods. J Therm Anal Cal. 75:189195. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27. Arshad, M, Rehman, S, Khan, SA, Masud, K, Arshad, N, Ghani, A. 2000 A thermal analysis study of 1,2-dipiperidinoethane complexes of cobalt, nickel, copper, zinc and cadmium by TG–DTG–DTA techniques. Thermochim Acta. 364:143153. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28. Arslan, H, Kulcu, N, Pekacar, AI. 2003 Thermal decomposition kinetics of anilino-p-chlorophenylglyoxime complexes of cobalt (II), nickel (II) and copper (II). Turk J Chem. 27:5561.

    • Search Google Scholar
    • Export Citation

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)