View More View Less
  • 1 Department of Physics, Duquesne University, 211 Bayer Center, Pittsburgh, PA, 15282-0321, USA
Restricted access

Abstract

Hematite with different particle sizes was obtained through isothermal annealing and mechanochemical ball-milling methods. The hematite phase is very stable under air atmosphere. The thermal stabilities of hematite under argon atmosphere were characterized by thermal analysis studies up to 800 °C using a simultaneous DSC–TG technique. The lattice parameters a and c of hematite with different particle sizes were extracted from the Rietveld structural refinement of powder X-ray diffraction patterns. Decomposition of hematite into a lower oxidation state in inert argon atmosphere was studied by the TG experiments for the first time and the enthalpy associated with the decomposition reaction was determined from the DSC studies. Particle size has a strong effect on the thermal behavior of hematite samples. Ball-milled hematite samples with smaller particle size showed that the phase transformation was extended to higher temperature range with larger enthalpy. Hematite with larger average particle size showed higher stability under argon atmosphere.

  • 1. Wang, GX, Gou, XL, Horvat, J, Park, J. Facile synthesis and characterization of iron oxide semiconductor nanowires for gas sensing application. J Phys Chem C. 2008;112:1522015225. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2. Raffaella, B, Etienne, S, Cinzia, G, Fabia, G, Mar, GH, Miguel, AG, Roberto, C, Pantaleo, DC. Colloidal semiconductor/magnetic heterostructures based on iron-oxide-functionalized brookite TiO2 nanorods. Phys Chem Chem Phys. 2009;11:36803691.

    • Search Google Scholar
    • Export Citation
  • 3. Winter, G. Anorganic pigments: dispersed festkörper mit technisch verwertbaren optischen und magnetischen eigenschaften. Fortschr Miner. 1979;57:172202.

    • Search Google Scholar
    • Export Citation
  • 4. Krishnamoorthy, S, Rivas, JA, Amiridis, MD. Catalytic oxidation of 1,2-dichlorobenzene over supported transition metal oxides. J Catal. 2000;193:264272. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5. Sorescu, M, Diamandescu, L, Tomescu, A, Tarabasanu-Mihaila, D, Teodorescu, V. Structure and sensing properties of 0.1SnO2–0.9-Fe2O3 system. Mater Chem Phys. 2008;107:127131. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6. Laberty, C, Navrotsky, A. Energetics of stable and metastable low-temperature iron oxides and oxyhydroxides. Geochim Costmochim Acta. 1998;62:29052913. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7. Greedan, JE. Magnetic oxides King, RB, eds. Encyclopedia of inorganic chemistry. New York: Wiley; 1994.

  • 8. Bernal, JD, Dasgupta, DR, Mackay, AL. The oxides and hydroxides of iron and their structural inter-relationships. Clay Miner Bull. 1959;4:1530. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9. Scholder, R. Recent investigations on oxometallates and double oxides. Anges Chem. 1962;1:220224. .

  • 10. Gump, JR, Wagner, WF, Schreyer, JM. Preparation and analysis of barium ferrate (VI). Anal Chem. 1954;26:1957 .

  • 11. Ichida, T. Mössbauer study of the thermal decomposition products of BaFeO4. J Solid State Chem. 1973;7:308315. .

  • 12. Withers, RL, Bursill, LA. Higher-order structural relationships between hematite and magnetite. J Appl Crystallogr. 1980;13:346353. .

  • 13. Barbier, A, Weiss, W, Van Hove, MA, Somorjai, GA. Magnetite Fe3O4(111): surface structure by LEED crystallography and energetic. Surf Sci. 1994;302:259279. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14. Gautier-Soyer, M, Pollack, M, Henriot, M, Guittet, MJ. The (1×2) reconstruction of the α-Fe2O3 () surface. Surf Sci. 1996;352–354:112116. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15. Fan, HM, Yi, JB, Yang, Y, Kho, KW, Tan, HR, Shen, ZX, Ding, J, Sun, XW, Olivo, MC, Feng, YP. Single-crystalline MFe2O4 nanotubes/nanorings synthesized by thermal transformation process for biological applications. ACS Nano. 2009;3:27982808. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16. Navrotsky, A, Mazeina, L, Majzlan, J. Size-driven structural and thermodynamic complexity in iron oxides. Science. 2008;319:16351638. .

  • 17. Jozwiak, W, Kaczmarek, E, Maniecki, TP, Ignaczak, W, Maniukiewicz, W. Reduction behavior of iron oxides in hydrogen and carbon monoxide atmospheres. Appl Catal A. 2007;326:1727. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18. Misono, M, Sakata, K, Ueda, F, Nozawa, Y, Yoneda, Y. Catalytic properties of iron oxide III. Oxidative dehydrogenation of butenes over iron oxide catalysts. Bull Chem Soc Jpn. 1980;53:648652. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19. Holleman, AF, Wiberg, E. Inorganic chemistry. San Diego: Academic Press; 2001.

  • 20. Sorescu, M, Xu, TH, Diamandescu, L. Synthesis and characterization of xTiO2·(1−x)α-Fe2O3 magnetic ceramic nanostructure system. Mater Character. 2010;61:11031118. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21. Sorescu M , Xu TH. The effect of ball-milling on the thermal behavior of anatase doped hematite systems. J Therm Anal Calorim. 2010. .

  • 22. Snow, CL, Lee, CR, Shi, Q, Boerio-Goates, J, Woodfield, BF. Size-dependence of the heat capacity and thermodynamic properties of hematite (α-Fe2O3). J Chem Thermodyn. 2010;42:11421151. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23. Sorescu, M, Diamandescu, L. Mechanochemical and magnetomechanical synthesis of hematite nanoparticles. Hyperfine Interact. 2010;196:349358. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24. Lin CR , Chiang RK, Cheng CJ, Lai HY, Lyubutin IS, Alkaev EA. Preparation of magnetite nanoparticles by thermal decomposition of hematite powder in the presence of organic solvent, In: Pappas DP, editor. Nanoscale magnetics and device applications. Mater Res Soc Symp Proc; 2007. 998E: 0998-J08-05.

    • Search Google Scholar
    • Export Citation
  • 25. Fellows, RA, Lennie, AR, Raza, H, Pang, CL, Thornton, G, Vaughan, DJ. Fe3O4 formation on a reduced α-Fe2O3 () substrate: a low-energy electron diffraction and scanning tunneling microscopy study. Surf Sci. 2000;445:1117. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26. Betancur, JD, Restrepo, J, Palacio, CA. Thermally driven and ball-milled hematite to magnetite transformation. Hyperfine Interact. 2003;148:163175. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27. Wiltowski, T, Piotrowski, K, Lorethova, H, Stonawski, L, Mondal, K, Lalvani, SB. Neural network modeling of iron oxide reduction kinetics. Chem Eng Proc. 2005;44:775783. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28. Piotrowski, K, Mondal, K, Lorethova, H, Stonawski, L, Szymanski, T, Wiltowski, T. Effect of gas composition on the kinetics of iron oxide reduction in a hydrogen process. Int J Hydrogen Energy. 2005;30:15431554. .

    • Crossref
    • Search Google Scholar
    • Export Citation

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
May 2021 2 0 0
Jun 2021 0 0 0
Jul 2021 4 0 0
Aug 2021 10 0 0
Sep 2021 1 0 0
Oct 2021 2 0 0
Nov 2021 0 0 0