Authors:
S. Wacharine Applied Thermodynamics Laboratory, Chemistry Department, Faculty of Science, Tunis El Manar University, 2092, Tunis El Manar, Tunisie

Search for other papers by S. Wacharine in
Current site
Google Scholar
PubMed
Close
,
D. Hellali Applied Thermodynamics Laboratory, Chemistry Department, Faculty of Science, Tunis El Manar University, 2092, Tunis El Manar, Tunisie

Search for other papers by D. Hellali in
Current site
Google Scholar
PubMed
Close
,
H. Zamali Applied Thermodynamics Laboratory, Chemistry Department, Faculty of Science, Tunis El Manar University, 2092, Tunis El Manar, Tunisie

Search for other papers by H. Zamali in
Current site
Google Scholar
PubMed
Close
,
J. Rogez Institut Matériaux Microélectronique Nanosciences de Provence (IM2NP), UMR 6242 CNRS, Paul Cézanne University, Avenue Escadrille Normandie-Niémien, 13397, Marseille Cedex 20, France

Search for other papers by J. Rogez in
Current site
Google Scholar
PubMed
Close
, and
M. Jemal Applied Thermodynamics Laboratory, Chemistry Department, Faculty of Science, Tunis El Manar University, 2092, Tunis El Manar, Tunisie

Search for other papers by M. Jemal in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The phase transitions of RbNO3 and the binary phase diagram of (Cs,Rb)NO3 were investigated at atmospheric pressure, using simultaneous direct and differential thermal analysis, μDTA and DSC techniques. A fourth phase transition of RbNO3 has been observed at temperature near the melting point. The phase diagram of this system is characterised by a eutectic, two eutectoid and an azeotropic-like invariants. Three limited solid solutions and two continuous solid solutions have been detected at low temperature.

  • 1. Wallerant, F. Binary systems formed by alkali metal nitrates. Bull Soc Min. 1905;28:206 Cited in Ref. 45.

  • 2. Blidin, VP. Reciprocal system of rubidium and cesium chlorides and nitrates. Izv Sektora Fiz Khim Anal Inst Obshch Neorg Khim Akad Nauk SSSR. 1953;23:233240.

    • Search Google Scholar
    • Export Citation
  • 3. Protsenko, PI, Belova, ZI. Binary systems of calcium nitrate with the nitrates of the first and second group. Zh Neorg Khim. 1957;2:26172620.

    • Search Google Scholar
    • Export Citation
  • 4. Khovokov, IP, Eumoe, AI. Solidus and liquidus curves of (Rb–Cs)NO3 and (K–Cs)NO3 systems. Zh Irikl Khim. 1974;47: 5 11491150.

  • 5. Secco, EA, Secco, RA. Heats of solution/substitution in TlNO3 and CsNO3 crystals and in RbNO3 and CsNO3 crystals from heats of transition: the complete phase diagrams of TlNO3–CsNO3 and RbNO3–CsNO3 systems. J Phys Chem Solids. 2002;63:433440. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6. Brown, RN, McLaren, AC. The thermal transformations in solid rubidium nitrate. Acta Cryst. 1962;15:974976. .

  • 7. Shamsuzzoha, M, Lucas, BW. Polymorphs of rubidium nitrate and their crystallographic relationships. Can J Chem. 1988;66:819823. .

  • 8. Pohl, J, Pohl, D, Adiwidjaja, G. Phase transition in rubidium nitrate at 346K and structure at 296, 372, 413 and 437K. Acta Cryst. 1992;B48:160166.

    • Search Google Scholar
    • Export Citation
  • 9. Zhu, B, Stjerna, B, Mellander, B-E. Cubic rubidium nitrate at room temperature. Solid State Commun. 1994;89: 2 135138. .

  • 10. Chary, AS, Reddy, SN. Effect of structural changes on DC ionic conductivity of rubidium nitrate single crystals. Phys Status Solidi B. 1998;208:349352. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11. Lucas, BW. Phase transitions and disorder in rubidium nitrate. Mater Sci Forum. 1988;27–28:9598. .

  • 12. Finbak, C, Hasselo, O, Stromme, LC. Polymorphs of rubidium nitrate and their crystallographic relationships. Z Phys Chem. 1937;B37:468 Cited in Ref. 7.

    • Search Google Scholar
    • Export Citation
  • 13. Salhotra, PP, Subbarao, EC, Venkateswarlu, P. Polymorphism of rubidium nitrate. Phys Status Solidi. 1968;29:859864. .

  • 14. Ahtee, M, Hewat, AW. Structures of the high temperature phases of rubidium nitrate. Phys Status Solidi. 1980;A58:525531.

  • 15. Ichikawa, K, Matsumoto, T. The heat capacities of lithium, sodium, potassium, rubidium and caesium nitrates in the solid and liquid states. Bull Chem Soc Jpn. 1983;56: 7 20932100. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16. Rao, CNR, Rao, KJ. Phase transitions in solids. Great Britain: Mc Graw-Hill Inc.; 1978 1737.

  • 17. Mustajoki, A. The specific heats and heats of transition of RbNO3. Ann Acad Sci Fenn Ser A VI. 1958;9:316.

  • 18. Plyshchev, VE, Markina, IB, Shklover, LP. The diagrams of phase transformation of the binary systems obtained from rubidium and cesium nitrates with the nitrates of strontium and barium. Zh Neorg Khim. 1956;1:16131618.

    • Search Google Scholar
    • Export Citation
  • 19. Hichri, M, Favotto, C, Zamali, H, Feutelais, Y, Legendre, B, Sebaoun, A, Jemal, M. Diagramme de phases du système binaire AgNO3–RbNO3. J Therm Anal Calorim. 2002;69:509518. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20. Protsenko, PI, Grin’ko, LS, Venerovskaya, LN, Lyutsedarskii, VA. Solid solutions of the potassium, rubidium//nitrite, nitrate system. J Appl Chem USSR. 1973;46:25682571.

    • Search Google Scholar
    • Export Citation
  • 21. Cleavar, B, Rhodes, ER, Ubbelohde, AR. Studies of phase transformations in nitrates and nitrites. I. Changes in ultra-violet absorption spectra on melting. Proc R Soc. 1963;A276:437453.

    • Search Google Scholar
    • Export Citation
  • 22. Secco, EA, Secco, RA. Heats of solution/substitution in TlNO3 and RbNO3 crystals from heats of transition. The complete phase diagram of the TlNO3–RbNO3 system. J Phys Chem Chem Phys. 1999;1:50115016.

    • Search Google Scholar
    • Export Citation
  • 23. Charsley, EL, Laye, PG, Markham, HM, Hill, JO, Berger, B, Griffiths, TT. Determination of the equilibrium temperatures and enthalpies of the solid–solid transitions of rubidium nitrate by differential scanning calorimetry. Thermochim Acta. 2008;469:6570. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24. Freeman, EL, Anderson, DA. Physical transitions of the alkali metal nitrates as revealed by differential thermal analysis. Nature. 1963;199: 4888 6364. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25. Diogenov, GG, Kirillova, VF. K, Rb//F, NO3 and Rb, Cs//F, NO3 systems. Zh Neorg Khim. 1983;28: 9 23842388.

  • 26. Denielou, L, Petitet, JP, Tequi, C, et Sirousse-Zia, D. Masse volumique et coefficient de dilatation des nitrates alcalins fondus et de leurs mélanges. J Chim Phys. 1977;74: 2 247248.

    • Search Google Scholar
    • Export Citation
  • 27. Diogenov, GG, Sarapulova, IF. The Cs, Li, Na//NO3 and Li, Na, Rb//NO3 systems. Russ J Inorg Chem. 1965;10: 8 10521054.

  • 28. Sirousse-Zia, D, Denielou, L, Petitet, JP, Tequi, C. Complément à l’étude thermodynamique de sels fondus à anion polyatomique. J Phys Lett. 1977;15: T 38 L61L63. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29. Kleppa, OJ, McCarty, FG. Heats of fusion of the monovalent nitrates by high-temperature reaction calorimetry. J Chem Eng Data. 1963;8: 3 33313332. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30. Shenkin, YS. Fusion diagrams for binary systems comprising alkali metal nitrates and chlorides. Zh Fiz Khim. 1980;54: 5 13301332.

    • Search Google Scholar
    • Export Citation
  • 31. Rao, KJ, Rao, CNR. Crystal structure transformations of alkali sulphates, nitrates and related substances: thermal hysteresis in reversible transformations. J Mater Sci. 1966;1:238248. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32. Arell, A, Varteva, M. Transition energies and temperatures of RbNO3 at the transitions II=III and III=IV. Ann Acad Sci Fenn Ser A VI. 1961;88:8.

    • Search Google Scholar
    • Export Citation
  • 33. Höhne, GWH, Breuer, KH, Eysel, W. Differential scanning calorimetry: comparison of power compensated and heat flux instruments. Thermochim Acta. 1983;69:145151. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34. Höhne, GWH, Eysel, W, Breuer, KH. Results of a round robin experiment on the calibration of differential scanning calorimeters. Thermochim Acta. 1985;94:199204. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35. Cingolani, A, Berchiesi, G, Franzosini, P. Ternary system rubidium nitrate and silver nitrate and thallium nitrate. Gazz Chim Ital. 1971;101: 12 981989.

    • Search Google Scholar
    • Export Citation
  • 36. Liu, J, Duan, C-g, Ossowski, MM, Mei, WN, Smith, RW, Hardy, JR. Molecular dynamics simulation of structural phase transitions in RbNO3 and CsNO3. J Solid State Chem. 2001;160:222229. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37. Pohl, D, Gross, T. Caesium nitrate (II) at 296K. Acta Cryst. 1993;C49:316318.

  • 38. Zamali, H, Jemal, M. Diagrammes de phases des systèmes binaires KNO3–CsNO3 et KNO3–NaNO3. J Therm Anal. 1994;41:10911099. .

  • 39. Hellali, D, Zamali, H, Sebaoun, A, Jemal, M. Phase diagram of the AgNO3–CsNO3 system. J Therm Anal Calorim. 1999;57:569574. .

  • 40. Palkin AP . Zh Russ Fiz Khim Obshch. 1928;60:317. (cited in book: Ernest M. L. Carl R.R. and Howard F.McM.: Phase diagrams for ceramists 1969 supplement. Compiled at the National Bureau of standards, Margie K. Reser, Editor. Copyright by the American Ceramic Society. USA;1969).

    • Search Google Scholar
    • Export Citation
  • 41. Bridgman, PW. Polymorphic changes under pressure of the univalent nitrates. Proc Am Acad. 1916;151:581625. .

  • 42. Mustajoki, A. The specific heat of cesium nitrate in the temperature interval 50–450°C as well as the heat of transition and heat of fusion. Ann Acad Sci Fenn A. 1957;6–7:112.

    • Search Google Scholar
    • Export Citation
  • 43. Maeso, MJ, Largo, J. The heat capacities of LiNO3 and CsNO3 from 350 to 700K. Thermochim Acta. 1993;222:195201. .

  • 44. Jriri, J, Rogez, J, Bergman, C, Mathieu, JC. Thermodynamic study of the condensed phases of NaNO3, KNO3 and CsNO3 and their transitions. Thermochim Acta. 1995;266:147161. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45. Bol’shakov, KA, Pokrovskii, BI, Plyushchev, VE. Binary systems formed by alkali metal nitrates. Zh Neorg Khim. 1961;6: 9 21202125.

    • Search Google Scholar
    • Export Citation
  • 46. Bol’shakov, KA, Pokrovskii, BI, Plyushchev, VE. Binary systems formed by alkali metal nitrates. Russ J Inorg Chem. 1961;6: 9 10831086.

    • Search Google Scholar
    • Export Citation
  • 47. Belaid Drira, N, Zamali, H, Jemal, M. Diagramme de phases et propriétés thermodynamiques du liquide du système binaire CsNO3–NaNO3. J Soc Chim Tun. 2001;4: 10 12691278.

    • Search Google Scholar
    • Export Citation
  • 48. Flotow, HE, O’Hare, PAG, Boerio-Goates, J. Heat capacity from 5 to 350K and thermodynamic properties of cesium nitrate to 725K. J Chem Thermodyn. 1981;13:477483. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 49. Tadashi, A, Mineo, K, Hiroshi, T. Studies on heat storage V Specific heat of molten alkali nitrates. Nagoya Kogyo Gijutsu Shikensho Hokoku. 1980;29: 2 2530.

    • Search Google Scholar
    • Export Citation
  • 50. Protsenko, AV, Protsenko, PI, Eremina, NN. Na, Cs // NO2, NO3 system. Zh Neorg Khim. 1971;16: 7 20092011.

  • 51. Nurminskii, NN, Diogenov, GG. Ternary reciprocal system of potassium and caesium acetates and nitrates. Russ J Inorg Chem. 1960;5: 9 10111013.

    • Search Google Scholar
    • Export Citation
  • 52. Bakes, M, Dupuy, J, Guion, J. Etude d’anomalies électroniques d’origine structural en sels fondus. C R Acad Sci Paris. 1963;256: 11 23762378.

    • Search Google Scholar
    • Export Citation
  • 53. Zamali, H, Jemal, M. Phase diagrams of binary systems: AgNO3–KNO3 and AgNO3–NaNO3. J Phase Equilib. 1995;16: 3 235238. .

  • 54. Jriri T . Contribution à l’étude thermodynamique des systèmes binaires et ternaires de nitrates alcalins. Thesis, Univ. of Aix-Marseille I, Marseille, France, 1994.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
1
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2024 43 0 0
Jul 2024 26 0 0
Aug 2024 22 0 0
Sep 2024 36 1 1
Oct 2024 132 0 0
Nov 2024 51 0 0
Dec 2024 1 0 0