View More View Less
  • 1 Centre for Biomaterials and Tissue Engineering, Univ. Politec Valencia, C/Ingeniro Fausto Elio S/N, 46021, Valencia, Spain
  • | 2 Laboratory of Thermodynamics, Univ. Politec. Cataluña, Av. Diagonal 647, 08028, Barcelona, Spain
  • | 3 Universidad Carlos III, Av. Universidad 30, 28911, Leganés, Madrid, Spain
  • | 4 Universidad Jaume I, Vicent Sos Baynat, s/n, 12071, Castelló de la Plana, Spain
Restricted access

Abstract

A set of materials has been prepared by sol–gel process containing different quantities of hydroxyapatite (0, 2.5 and 5% HAp w/w) using as silica precursors glycidyloxypropyltrimethoxysilane (GPTMS) and triethoxyvinylsilane (VTES). In order to optimize the curing process to obtain sintherized systems (inorganic network) or hybrid systems (organic–inorganic) a TG and FTIR studies have been developed and degradation kinetic triplet parameters were obtained (the activation energy, pre-exponential factor, and function of degree of conversion). The kinetic study was analyzed by means of an integral isoconversional non-isothermal procedure (model free), and the kinetic model was determined by the Coats–Redfern method and through the compensation effect (IKR). All the systems followed the n = 6 kinetic model. The addition of HAp increases the thermal stability of the systems. The isothermal degradation was simulated from non-isothermal data, and the curing process could be defined to obtain the two types of materials. Temperature under 250 °C allows the formation of hybrids networks.

  • 1. Wen, JY, Wilkes, GL. Organic/inorganic hybrid network materials by the sol–gel approach. Chem Mater. 1996;8:16671681. .

  • 2. Brinker CJ , Scherer GW. Sol–gel science: the physics and chemistry of sol–gel processing, London: Academic Press; 1990.

  • 3. Guglielmi, M. Sol–gel coatings on metals. J Sol–Gel Sci Technol. 1997;8:443449.

  • 4. Wright, JD, Sommerdijk, N. Sol–gel materials chemistry and applications. London: CRC Press; 2001.

  • 5. Vasconcelos, DCL, Carvalho, JAN, Mantel, M, Vasconcelos, WL. Corrosion resistance of stainless steel coated with sol–gel silica. J Non-Cryst Solids. 2000;273:135139. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6. Conde, A, De Damborenea, J, Duran, A, Menning, M. Protective properties of a sol–gel coating on zinc coated steel. J Sol–Gel Sci Technol. 2006;37:7985. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7. Sayilkan, H, Sener, S, Sener, E, Sulu, M. The sol–gel synthesis and application of some anticorrosive coating materials. Mater Sci. 2003;39:733739. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8. Parkhill, RL, Knobbe, ET, Donley, MS. Application and evaluation of environmentally compliant spray-coated ormosil films as corrosion resistant treatments for aluminum 2024-T3. Prog Org Coat. 2001;41:261265. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9. Chan, Z, Ai’mei, L, Xiao, Z, Miao, F, Juan, H, Hongbing, Z. Microstructures and properties of ORMOSIL comprising methyl, vinyl, and [gamma]-glycidoxypropyl-substitued silica. Opt Mater. 2007;29:15431547. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10. Li, PJ, Ohtsuki, C, Kokubo, T, Nakanishi, K, Soga, N, Nakamura, T, Yamamuro, T. Apatite formation induced by silica-gel in a simulated body-fluid. J Am Ceram Soc. 1992;75:20942097. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11. Kawashita, M, Nakao, M, Minoda, M, Kim, HM, Beppu, T, Miyamoto, T, Kokubo, T, Nakamura, T. Apatite-forming ability of carboxyl group-containing polymer gels in a simulated body fluid. Biomaterials. 2003;24:24772484. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12. Chico, B, Galván, JC, de la Fuente, D, Morcillo, M. Electrochemical impedance spectroscopy study of the effect of curing time on the early barrier properties of silane systems applied on steel substrates. Prog Org Coat. 2007;60:4553. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13. Garcia-Heras, M, Jimenez-Morales, A, Casal, B, Galvan, JC, Radzki, S, Villegas, MA. Preparation and electrochemical study of cerium-silica sol–gel thin films. J Alloys Compd. 2004;380:219224. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14. Galliano, P, De Damborenea, JJ, Pascual, MJ, Duran, A. Sol–gel coatings on 316L steel for clinical applications. J Sol–Gel Sci Technol. 1998;13:723727. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15. Ohtsuki, C, Miyazaki, T, Tanihara, M. Development of bioactive organic–inorganic hybrid for bone substitutes. Mater Sci Eng C. 2002;22:2734. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16. García, C, Ceré, S, Durán, A. Bioactive coatings prepared by sol–gel on stainless steel 316L. J Non-Cryst Solids. 2004;348:218224. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17. García, C, Ceré, S, Durán, A. Bioactive coatings deposited on titanium alloys. J Non-Cryst Solids. 2006;352:34883495. .

  • 18. Ballarre, J, Lopez, DA, Rosero, NC, Duran, A, Aparicio, M, Cere, SM. Electrochemical evaluation of multilayer silica-metacrylate hybrid sol–gel coatings containing bioactive particles on surgical grade stainless steel. Surf Coat Technol. 2008;203:8086. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19. Salla, JM, Cadenato, A, Ramis, X, Morancho, JM. Thermoset cure kinetics by isoconversional methods. J Therm Anal Calorim. 1999;56:771781. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20. Vyazovkin, S, Wight, CA. Kinetics in solids. Annu Rev Phys Chem. 1997;48:125149. .

  • 21. Coats, AW, Redfern, JP. Kinetic parameters from thermogravimetric data. Nature. 1964;201:68 .

  • 22. Ramis, X, Salla, JM, Cadenato, A, Morancho, JM. Simulation of isothermal cure of a powder coating—non-isothermal DSC experiments. J Therm Anal Calorim. 2003;72:707718. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23. Ramis, X, Cadenato, A, Salla, JM, Morancho, JM, Valles, A, Contat, L, Ribes, A. Thermal degradation of polypropylene/starch-based materials with enhanced biodegradability. Polym Degrad Stab. 2004;86:483491. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24. Vyazovkin, S, Linert, W. The application of isoconversional methods for analyzing isokinetic relationships occurring at thermal-decomposition of solids. J Solid State Chem. 1995;114:392398. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25. Vyazovkin, S, Linert, W. False isokinetic relationships found in the nonisothermal decomposition of solids. Chem Phys. 1995;193:109118. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26. Chrissafis, K. Kinetics of thermal degradation of polymers. J Therm Anal Calorim. 2009;95:273283. .

  • 27. Garcia, SJ, Serra, A, Ramis, X, Suay, J. Influence of the addition of erbium and ytterbium triflates in the curing kinetics of a DGEBA/o-tolybiguanide powder mixture. J Therm Anal Calorim. 2007;89:223231. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28. Garcia, SJ, Ramis, X, Serra, A, Suay, J. Cationic crosslinking of solid DGEBA resins with ytterbium(III) trifluoromethanesulfonate as initiator. J Therm Anal Calorim. 2006;83:429438. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29. Salla, JM, Morancho, JM, Cadenato, A, Ramis, X. Non-isothermal degradation of a thermoset powder coating in inert and oxidant atmospheres. J Therm Anal Calorim. 2003;72:719728. .

    • Crossref
    • Search Google Scholar
    • Export Citation

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2021 2 0 0
Jul 2021 0 0 0
Aug 2021 0 0 0
Sep 2021 1 0 0
Oct 2021 2 0 0
Nov 2021 1 0 0
Dec 2021 0 0 0