View More View Less
  • 1 Chemistry Discipline, Faculty of Science and Technology, Queensland University of Technology, GPO Box 2434, Brisbane, QLD, 4001, Australia
  • | 2 Mineralogy & Petrology, Australian Museum, 6 College St., Sydney, NSW, 2010, Australia
Restricted access

Abstract

Thermogravimetry combined with evolved gas mass spectrometry has been used to characterise the mineral ardealite and to ascertain the thermal stability of this ‘cave’ mineral. The mineral ardealite Ca2(HPO4)(SO4)·4H2O is formed through the reaction of calcite with bat guano. The mineral shows disorder, and the composition varies depending on the origin of the mineral. Thermal analysis shows that the mineral starts to decompose over the temperature range of 100–150 °C with some loss of water. The critical temperature for water loss is around 215 °C, and above this temperature, the mineral structure is altered. It is concluded that the mineral starts to decompose at 125 °C, with all waters of hydration being lost after 226 °C. Some loss of sulphate occurs over a broad temperature range centred upon 565 °C. The final decomposition temperature is 823 °C with loss of the sulphate and phosphate anions.

  • 1. Dumitras, D-G, Marincea, S, Bilal, E, Hatert, F. Apatite-(CaOH) in the fossil bat guano deposit from the “dry” Cioclovina Cave, Sureanu Mountains, Romania. Can Mineral. 2008;46:431445. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2. Hill CA , Cave Minerals. Source 138 pp. Book 1976 Company/Organization USA Accession Number 1977:174646 CAN 86:174646 CAPLUS Publisher Nat. Speleological Soc. Huntsville, Ala. Language (English); 1976.

    • Search Google Scholar
    • Export Citation
  • 3. Moravansky, D, Orvosova, M. Recent knowledge about the cave minerals of Slovakia. Miner Slovaca. 2007;39:203216.

  • 4. Moravansky, D, Zenis, P. Guano minerals in some caves of Western and Central Slovakia. Miner Slovaca. 1997;29:6172.

  • 5. Onac, BP, Mylroie, JE, White, WB. Mineralogy of cave deposits on San Salvador Island. Bahamas Carbonates Evaporites. 2001;16:816. .

  • 6. White, WB. Cave minerals and speleothems Ford, TD, Cullingford, CH, eds. The science of speleology. London: Academic Press; 1976 267327.

    • Search Google Scholar
    • Export Citation
  • 7. Mingaye, JCH. Phosphatic deposits in the Jenolan Caves, N. S. Wales, Report of Australian Association. 7, pp 111116. (1898).

  • 8. Mingaye, JCH. Phosphatic deposits in the Jenolan Caves, N. S. Wales. Rec Geol Surv N S W. 1899;6:111116.

  • 9. Suessmilch, CA, Stone, WG. Geology of the Jenolan caves district. J Proc R Soc N S W. 1916;49:332384.

  • 10. Osborne, RaL, Zwingmann, H, Pogson, RE, Colchester, DM. Carboniferous clay deposits from Jenolan Caves, New South Wales: implications for timing of speleogenesis and regional geology. Aust J Earth Sci. 2006;53:377405. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11. Dumitras, D-G, Marincea, S, Fransolet, A-M. Brushite in the bat guano deposit from the “dry” Cioclovina Cave (Sureanu Mountains, Romania). Neues Jahrbuch fuer Mineralogie, Abhandlungen. 2004;180:4564. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12. Hill, CA. Recent anhydrite and bassanite from caves in Big Bend National Park, Texas. NSS Bull. 1979;41:126127.

  • 13. Shopov, I. Bulgarian cave minerals. NSS Bull. 1988;50:2124.

  • 14. Sakae, T, Nagata, H, Sudo, T. The crystal structure of synthetic calcium phosphate-sulfate Ca2HPO4SO4·4H2O. Am Miner. 1978;63:520527.

    • Search Google Scholar
    • Export Citation
  • 15. Cheng, H, Yang, J, Frost, RL, Liu, Q, Zhang, Z. Thermal analysis and Infrared emission spectroscopic study of kaolinite-potassium acetate intercalate complex. J Therm Anal Calorim. 2011;103:507513. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16. Palmer, SJ, Grand, LM, Frost, RL. Thermal analysis of hydrotalcite synthesised from aluminate solutions. J Therm Anal Calorim. 2011;103:473478. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17. Bakon, KH, Palmer, SJ, Frost, RL. Thermal analysis of synthetic reevesite and cobalt substituted reevesite (Ni, Co)6Fe2(OH)16(CO3)·4H2O. J Therm Anal Calorim. 2010;100:125131. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18. Frost, RL, Bahfenne, S. Thermal analysis and Hot-stage Raman spectroscopy of the basic copper arsenate mineral. J Therm Anal Calorim. 2010;100:8994. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19. Frost, RL, Palmer, SJ, Grand, L-M. Synthesis and thermal analysis of indium-based hydrotalcites of formula Mg6In2(CO3)(OH)16·4H2O. J Therm Anal Calorim. 2010;101:859863. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20. Frost, RL, Palmer, SJ, Kristof, J, Horvath, E. Dynamic and controlled rate thermal analysis of halotrichite. J Therm Anal Calorim. 2010;99:501507. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21. Frost, RL, Palmer, SJ, Kristof, J, Horvath, E. Thermoanalytical studies of silver and lead jarosites and their solid solutions. J Therm Anal Calorim. 2010;101:7379. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22. Grand, L-M, Palmer, SJ, Frost, RL. Synthesis and thermal stability of hydrotalcites containing manganese. J Therm Anal Calorim. 2010;100:981985. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23. Grand, L-M, Palmer, SJ, Frost, RL. Synthesis and thermal stability of hydrotalcites based upon gallium. J Therm Anal Calorim. 2010;101:195198. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24. Kristof, J, Frost, RL, Palmer, SJ, Horvath, E, Jakab, E. Thermoanalytical studies of natural potassium, sodium and ammonium alunites. J Therm Anal Calorim. 2010;100:961966. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25. Lu, L, Cai, J, Frost, RL. Desorption of stearic acid upon surfactant adsorbed montmorillonite. J Therm Anal Calorim. 2010;100:141144. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26. Lu, L, Frost, RL, Cai, J. Desorption of benzoic and stearic acid adsorbed upon montmorillonites: a thermogravimetric study. J Therm Anal Calorim. 2010;99:377384. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27. Palmer, SJ, Frost, RL. Thermal decomposition of Bayer precipitates formed at varying temperatures. J Therm Anal Calorim. 2010;100:2732. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28. Tao, Q, He, H, Frost, RL, Yuan, P, Zhu, J. Thermal decomposition of silylated layered double hydroxides. J Therm Anal Calorim. 2010;101:153159. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29. Yang, J, Frost, RL, Martens, WN. Thermogravimetric analysis and hot-stage Raman spectroscopy of cubic indium hydroxide. J Therm Anal Calorim. 2010;100:109116. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30. Frost, RL, Hales, MC, Martens, WN. Thermogravimetric analysis of selected group (II) carbonate minerals. Implication for the geosequestration of greenhouse gases. J Therm Anal Calorim. 2009;95:9991005. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31. Frost, RL, Kristof, J, Horvath, E. Controlled rate thermal analysis of sepiolite. J Therm Anal Calorim. 2009;98:423428. .

  • 32. Palmer, SJ, Kristof, J, Vagvoelgyi, V, Horvath, E, Frost, RL. Thermal decomposition of hydrotalcite with hexacyanoferrate(II) and hexacyanoferrate(III) anions in the interlayer. J Therm Anal Calorim. 2009;96:449454. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33. Voyer, N, Soisnard, A, Palmer, SJ, Martens, WN, Frost, RL. Thermal decomposition of the layered double hydroxides of formula Cu6Al2(OH)16CO3 and Zn6Al2(OH)16CO3. J Therm Anal Calorim. 2009;96:481485. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34. Vagvoelgyi, V, Hales, M, Frost, RL, Locke, A, Kristof, J, Horvath, E. Conventional and controlled rate thermal analysis of nesquehonite Mg(HCO3)(OH)·2(H2O). J Therm Anal Calorim. 2008;94:523528. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35. Onac, BP, Hess, JW, White, WB. The relationship between the mineral composition of speleothems and mineralization of breccia pipes: evidence from corkscrew cave, Arizona, USA. Can Miner. 2007;45:11771188. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36. Anthony, JW, Bideaux, RA, Bladh, KW, Nichols, MC. Handbook of mineralogy. Tuscon, AZ: Mineral Data Publishing; 2000.

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Apr 2021 1 0 0
May 2021 2 0 0
Jun 2021 1 0 0
Jul 2021 2 0 0
Aug 2021 0 1 0
Sep 2021 1 0 0
Oct 2021 0 0 0