View More View Less
  • 1 School of Physics and Material Science, Thapar University, Patiala 147001, India
  • | 2 University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, Delhi 110403, India
  • | 3 Physics of Energy Harvesting Division, National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012, India
Restricted access

Abstract

In this study, we have studied the stability of TiO2–CdSe nanocomposites in which the individual moieties are linked using a bifunctional linker (mercaptopropionic acid). Nanoparticles of TiO2 and CdSe are synthesized by sol–gel and one pot methods. The equimolar amount of the above particles is utilized to prepare nanocomposites with and without linker. These samples are characterized for their structural, thermal, and optical properties using X-ray diffraction (XRD), differential thermal analysis (DTA), thermogravimetric analysis (TG), Fourier transform infra-red spectroscopy (FTIR), and UV–Vis spectroscopy. The average particle size of TiO2 and CdSe are 16 and 23 nm, respectively. The addition of a bifunctional linker shows remarkable effect on the properties of TiO2–CdSe nanocomposites.

  • 1. Fisher, AC, Peter, LM, Ponomarev, EA, Walker, AB, Wijayantha, KGU. Intensity dependence of the back reaction and transport of electrons in dye-sensitized nanocrystalline TiO2 solar cells. J Phys Chem B. 2000;4:949958. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2. Biancardo, M, Argazzi, R, Bignozzi, CA. Solid-state photochromic device based on nanocrystalline TiO2 functionalized with electron donor–acceptor species. Inorg Chem. 2005;44:96199621. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3. Yang, T, Lin, H, Wei, B, Wu, C, Lin, C. Enhancement of the gas sensing properties of nano-TiO2. Rev Adv Mater Sci. 2003;4:4854. .

  • 4. Wold, A. Photocatalytic properties of titanium dioxide (TiO2). Chem Mater. 1993;5:280283. .

  • 5. Zhang, Z, Wang, C, Zakaria, R, Ying, J. Role of particle size in nanocrystalline TiO2-based photocatalysts. J Phys Chem B. 1998;102:1087110878. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6. Khan, MA, Jung, HT, Yang, OB. Synthesis and characterization of ultrahigh crystalline TiO2 nanotubes. J Phys Chem B. 2006;110:66266630. .

  • 7. Sun, Y, Li, A, Qi, M, Zhang, L, Yao, X. High surface area anatase titania nanoparticles prepared by MOCVD. Mater Sci Eng B. 2001;86:185188. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8. Xia, B, Huang, H, Xie, Y. Heat treatment on TiO2 nanoparticles prepared by vapor-phase hydrolysis. Mater Sci Eng B. 1999;57:150154. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9. Oskam, G, Nellure, A, Penn, RL, Searson, PC. The growth kinetics of TiO2 nanoparticles from titania(IV) alkoxide at high water/titanium ratio. J Phys Chem B. 2003;107:17341738. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10. He, D, Lin, F. Preparation and photocatalytic activity of anatase TiO2 nanocrystallites with high thermal stability. Mater Lett. 2007;61:33853387. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11. Kormann, C, Bahnemann, DW, Hoffmann, MR. Preparation and characterization of quantum size TiO2. J Phys Chem. 1988;92:51965201. .

  • 12. Yanagisawa, K, Ovenstone, J. Crystallization of anatase from amorphous titania using the hydrothermal technique: effects of starting material and temperature. J Phys Chem B. 1999;103:77817787. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13. Hu, Y, Tsai, HL, Huang, CL. Phase transformation of precipitated TiO2 nanoparticles. Mater Sci Eng A. 2003;344:209214. .

  • 14. Shen, Q, Sato, T, Hashimoto, M, Chen, C, Toyoda, T. Photoacoustic and photo electrochemicalcharacterization of CdSe-sensitized TiO2 electrodes composed of nanotubes and nanowires. Thin Solid Films. 2006;499:299305. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15. Robel, I, Subramanian, V, Kuno, M, Kamat, PV. Quantum dot solar cells. Harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films. J Am Chem Soc. 2006;128:23852393. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16. Bang, JH, Kamat, PV. Quantum dot sensitized solar cells. A tale of two semiconductor nanocrystals: CdSe and CdTe. ACS Nano. 2009;3:14671476. .

  • 17. Kongkanand, A, Tvrdy, K, Takechi, K, Kuno, K, Kamat, PV. Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe–TiO2 architecture. J Am Chem Soc. 2008;130: 12 40074015. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18. Natan, MJ, Thackeray, JW, Wrighton, MS. Interaction of thiols with n-type cadmium sulfide and n-type cadmium selenide in aqueous solutions: adsorption of thiolate anion and efficient photoelectrochemical oxidation to disulfides. J Phys Chem B. 1986;90: 17 40894098. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19. Granot, E, Patolsky, F, Willner, I. Electrochemical assembly of a CdS semiconductor nanoparticle monolayer on surfaces: structural properties and photoelectrochemical applications. J Phys Chem B. 2004;108: 19 58755881. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20. Lawless, D, Kapoor, S, Meisel, D. Bifunctional capping of CdS nanoparticles and bridging to TiO2. J Phys Chem. 1995;99: 25 1032910335. .

  • 21. Mann, JR, Watson, DF. Adsorption of CdSe nanoparticles to thiolated TiO2 surfaces: influence of intralayer disulfide formation on CdSe surface coverage. Langmuir. 2007;23: 22 1092410928. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22. Subramanian, V, Wolf, EE, Kamat, PV. Catalysis with TiO2/Au nanocomposites. Effect of metal particle size on the fermi level equilibration. J Am Chem Soc. 2004;126:49434950. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23. Murray, CB, Norris, DJ, Bawendi, MG. Synthesis and characterization of nearly monodisperse CdE (E=sulphur, selenium, tellurium) semiconductor nanocrystallites. J Am Chem Soc. 1993;115:87068715. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24. Cullity, BD. Elements of X-rays diffraction. Reading: Addison Wesley; 1978.

  • 25. Tong, T, Zhang, J, Tian, B, Chen, F, He, D. Preparation and characterization of anatase TiO2 microspheres with porous frameworks via controlled hydrolysis of titanium alkoxide followed by hydrothermal treatment. Mater Lett. 2008;62:29702972. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26. Deacon, GB, Green, JHS. Vibrational spectra of ligands and complexes. II. Infra-red spectra (3650–375cm−1 of triphenyl-phosphine, triphenylphosphine oxide, and their complexes. Spectrochim Acta. 1968;24a:845852.

    • Search Google Scholar
    • Export Citation
  • 27. Becerra, LR, Murray, CB, Griffin, RG, Bawendi, MG. Investigation of the surface morphology of capped CdSe nanocrystallites by 31 P nuclear magnetic resonance. J Chem Phys. 1994;100:32973300. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28. Dibbell, RS, Soja, GR, Hoth, RM, Watson, DF. Photocatalytic patterning of monolayers for the site-selective deposition of quantum dots onto TiO2 surfaces. Langmuir. 2007;23:34323439. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29. Deorsola, FA, Valluari, D. Synthesis of TiO2 nanoparticles through gel combustion process. J Mater Sci. 2008;43:32743278. .

  • 30. Marinescu, C, Safronia, A, Rusti, C, Piticescu, R, Badilita, V, Vasile, E, Baies, R, Tanasescu, S. DSC investigation of nanocrystalline TiO2 powder. J Therm Anal Calorim. 2011;103:4957. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31. Tauc J . In: Tauc J, editor. Amorphous and liquid semiconductors. New York: Plenum; 1974. p. 175.

  • 32. Venkatachalam, N, Palanichamy, M, Murugesan, V. Sol–gel preparation and characterization of alkaline earth metal doped nano TiO2: efficient photocatalytic degradation of 4-chlorophenol. J Mol Catal A. 2007;273:177185. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33. Wang, H, Lewis, JP. Second generation photocatalytic materials: anion doped TiO2. J Phys Condens Matter. 2006;18:421 .

  • 34. Kavan, L, Graitzel, M, Gilbert, SE, Klemenz, C, Scheel, HJ. Electrochemical and photoelectrochemical investigation of single-crystal anatase. J Am Chem Soc. 1996;118: 28 67166723. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35. Asahi, R, Taga, Y, Mannstadt, W, Freeman, AJ. Electronic and optical properties of anatase TiO2. Phys Rev B. 2000;61:74597465. .

  • 36. Serpone, N, Lawless, D, Khairutdinovt, R. Size effects on the photophysical properties of colloidal anatase TiO2 particles: Size quantization versus direct transitions in this indirect semiconductor?. J Phys Chem. 1995;99:1664616654. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37. Jhonson, SR, Tidies, T. Temperature dependence of the Urbach edge in GsAs. J Appl Phys. 1995;78:56095611. .

  • 38. Urbach, F. The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys Rev. 1953;92:1324 .