View More View Less
  • 1 Department of Chemistry, North Eastern Regional Institute of Science and Technology (Deemed University), Nirjuli, Itanagar, Arunachal Pradesh, 791109, India
Restricted access

Abstract

Heterobimetallic oxalato complex precursors, manganese(II)tetraaquatris(oxalato)lanthanate(III)hexahydrate (MnOLa), cobalt(II)pentaaquatris(oxalato)lanthanate(III)trihydrate (CoOLa), nickel(II)pentaaquatris(oxalato)lanthanate(III)hexahydrate (NiOLa) and copper(II)diaaquatris(oxalato)lanthanate(III)monohydrate (CuOLa) of the type, M3[La(C2O4)3(H2O)m]2·nH2O have been synthesized in aqueous medium. The precursors were characterized by elemental analysis, IR, electronic spectral and powder X-ray diffraction studies. The good crystalline nature with monoclinic structures predominates in MnOLa and NiOLa whereas triclinic structures were found in CoOLa and CuOLa. The solid-state thermal behaviour of the precursors was explored using TG, DTG and DTA in air. The MnOLa generated a mixture species consisting mainly of MnO2, Mn3O4, Mn5O8, La2O3 and LaMn7O12 at 1000 °C through the formation of several intermediate species at 380 and 570 °C. The studies revealed that CoOLa led mainly to LaCoO3 and La2CoO4 along with some oxides of both the cobalt and lanthanum at 1000 °C. In case of nickel analogue the mixture species identified at 1000 °C are mainly of La2NiO4, La2O3, Ni2O3 and NiO2. In case of CuOLa the product at 1000 °C consisted of La2CuO4, La2Cu2O5 and oxides of copper and lanthanum. The nature of decomposition of the precursors in nitrogen were seen from DSC study and the kinetic parameters i.e., E, lnk0, ΔH#, ΔS# and order of reaction of all the steps were evaluated and discussed.

  • 1. Kareiva, A, Harlan, CJ, MacQueen, DB, Cook, RL, Barron, AR. Carboxylate-substituted alumoxanes as processable precursors to transition metal–aluminium and lanthanide–aluminium mixed-metal oxides: atomic scale mixing via a new transmetalation reaction. Chem Mater. 1996;8:23312340. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2. Ohto, K, Yano, M, Inoue, K, Nagasaki, T, Goto, M, Nakashio, F, Shinkai, S. Effect of coexisting alkaline metal ions on the extraction selectivity of lanthanide ions with calixarene carboxylate derivatives. Polyhedron. 1997;16:16551661. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3. Gu, X, Xue, D. Selected controlled synthesis of three-dimensional 4d–4f heterometallic coordination frameworks by lanthanide carboxylate subunits and silver centers. Cryst Growth Des. 2006;6:25512557. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4. Gu, X, Xue, D. Spontaneously resolved homochiral 3D lanthanide–silver heterometallic coordination framework with extended helical Ln–O–Ag subunits. Inorg Chem. 2006;45:92579261. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5. Gu, X, Xue, D. 3D coordination framework [Ln4(μ3-OH)2Cu615(IN)8(OAc)3](IN=isonicotinate): employing 2D layers of lanthanide wheel clusters and 1D chains of copper halide clusters. Inorg Chem. 2007;46:53495353. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6. Gabal, MA, Ata-Allah, SS. Concerning the cation distribution in MnFe2O4 synthesized through the thermal decomposition of oxalates. J Phys Chem Solids. 2004;65:9951003. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7. Gabal, MA. Non-isothermal kinetics and characterization studies for the decomposition course of CuC2O4–CdC2O4 mixture in air. J Phys Chem Solids. 2007;68:16101616. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8. Kebede, T, Ramana, KV, Prasada Rao, MS. Some studies on thallium oxalates XIV Indium(III)bis-oxalatodiaquathallate(III)hexahydrate. Thermochim Acta. 2002;381:3136. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9. Gallagher, PK. Thermal decomposition of barium and strontium trisoxalato ferrate(III). Inorg Chem. 1965;4:965970. .

  • 10. Gallagher, PK, Kurkjian, CR. A study of the thermal decomposition of some complex oxalates of iron(III) using the Massbauer effect. Inorg Chem. 1966;5:214219. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11. Randhawa, BS, Kaur, M. Preparation of zinc ferrite from the thermolysis of zinc tris(malonato)ferrate(III)decahydrate. Indian J Eng Mater Sci. 2003;10:148150.

    • Search Google Scholar
    • Export Citation
  • 12. Randhawa, BS, Singh, J, Kaur, H, Kaur, M. Preparation of ferrite from thermolysis of nickel tris(malonato)ferrate(III)heptahydrate precursor. Ceram Int. 2010;36:19931996. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13. Randhawa, BS, Kaur, M. Preparation of magnesium and calcium ferrites from the thermolysis of M3[Fe(cit)2]2·xH2O precursors. J Radioanal Nucl Chem. 2004;261:569576. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14. Randhawa, BS, Gandotra, K. Preparation of ferrites from the thermal decomposition of manganese and calcium tris(succinato)ferrates(III) precursors. J Therm Anal Calorim. 2007;90:887891. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15. Randhawa, BS, Gupta, M, Kaur, M. Preparation of cobalt ferrite from the thermolysis of cobalt tris(malonato)ferrite(III)trihydrate precursor. Ceram Int. 2009;35:35213524. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16. Hayrapetyan, SS, Khachatryan, HG. The porosity of partly sintered nickel iron oxalates. Microporous Mesoporous Mater. 2006;89:3338. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17. Marinescu, G, Patron, L, Carp, O, Diamandescu, L, Stanica, N, Meghea, A, Brezianu, M, Grenier, J-C, Etourneau, J. Polynuclear coordination compounds as precursors for CuFe2O4. J Mater Chem. 2002;12:34583462. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18. Sanyal, TK, Dass, NN. Synthesis and the thermal decomposition of iron(III)tris(oxalate)ferrate(III)tetrahydrate. J Inorg Nucl Chem. 1980;42:811813. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19. Deb, N, Baruah, SD, Sen Sarma, N, Dass, NN. Synthesis, characterization and thermal investigation of M[M(C2O4)3xH2O (x=4 for M=Cr(III); x=2 for M=Sb(III) and x=9 for M=La(III)). Thermochim Acta. 1998;320:5367. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20. Deb, N, Baruah, SD, Dass, NN. Synthesis, characterization and the thermal decomposition of lithium tris(oxalate)lanthanum(III)nonahydrate and sodium tris(oxalate)lanthanum(III)octahydrate. Thermochim Acta. 1999;326:4352. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21. Deb, N. Synthesis, characterization and the thermal decomposition of potassium tris(oxalate)lanthanum(III)nonahydrate. Thermochim Acta. 1999;338:2733. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22. Deb, N. Thermal investigations of M[La(C2O4)3xH2O (M=Cr(III) and Co(III)). J Therm Anal Calorim. 2002;67:699712. .

  • 23. Deb, N. An investigation on the solid-state thermal decomposition of bimetallic oxalate and tartrate coordination precursors of lanthanum(III) and palladium(II) ions. J Anal Appl Pyrol. 2008;82:223228. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24. Deb, N. Thermal decomposition of manganese(II)bis(oxalato)nickelate(II)tetrahydrate. J Therm Anal Calorim. 2005;81:6165. .

  • 25. Deb, N. Cadmium(II)bis(oxalato)cobaltate(II)pentahydrate: thermal decomposition. J Therm Anal Calorim. 2004;75:837846. .

  • 26. Deb, N. Thermal decomposition behaviour of zinc(II)bis(oxalato)cobaltate(II)pentahydrate. Ind J Chem. 2003;42A:506509.

  • 27. Deb, N. An investigation on the solid state pyrolytic decomposition of bimetallic oxalate precursors of Ca, Sr and Ba with cobalt: a mechanistic approach. J Anal Appl Pyrol. 2007;80:389399. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28. Deb, N. A mechanistic approach on the solid state thermal decomposition of bimetallic oxalate coordination compounds of Mn(II), Fe(II) and Cu(II) with cobalt. J Anal Appl Pyrol. 2007;78:2431. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29. Deb, N. An investigation on the solid-state thermal decomposition behaviour of uranyl(II)diaquatris(oxalato)lanthanate(III)octahydrate and cobalt(II)uranyl(II)pentaquatris(oxalate)lanthanate(III)octahydrate. J Anal Appl Pyrol. 2010;87:269275. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30. Basset, J, Denny, RC, Jeffery, GH, Mendhan, J. Vogel’s text book of quantitative inorganic analysis. 4 Essex: Longman; 1985.

  • 31. Nakamoto K . Infrared spectra of inorganic and co-ordination compounds. 2nd ed. New York: Wiley; 1969. p. 83, 89, 219, 245.

  • 32. Cotton, FA, Wilkinson, G. Advanced inorganic chemistry. New York: Wiley; 1988 730.

  • 33. Deb, N, Gogoi, PK, Dass, NN. Synthesis and thermal decomposition of cobalt(II)bis(oxalato)cobaltate(II)tetrahydrate. J Therm Anal Calorim. 1989;35:2734. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34. Bently, FF, Smithson, LD, Rozek, AL. Infrared spectra and characteristic frequencies 300–700cm−1. New York: Wiley; 1968 103.

  • 35. Deb, N, Gogoi, PK, Dass, NN. Thermal decomposition of manganese(II)bis(oxalato)manganese(II)tetrahydrate. Thermochim Acta. 1989;145:7786. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36. Dean, JA. Lange’s handbook of chemistry. New York: McGraw Hill; 1987 475.

  • 37. Nagase, K, Sato, K, Tanaka, N. Thermal dehydration and decomposition reactions of bivalent metal oxalates in the solid state. Bull Chem Soc Jpn. 1975;48:439442. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38. Deb, N. Thermal decomposition behaviour of lanthanum(III)tris-tartrato lanthanate(III)decahydrate. J Therm Anal Calorim. 2004;78:227237. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39. Jisha, KR, Suma, S, Sudarsanakumar, MR. Synthesis, spectral characterisation and thermal studies of zirconyl complexes of biologically active molecules. J Therm Anal Calorim. 2010;99:509513. .

    • Crossref
    • Search Google Scholar
    • Export Citation