Authors:
Shashi B. Kalia Department of Chemistry, Himachal Pradesh University, Shimla, Himachal Pradesh, 171005, India

Search for other papers by Shashi B. Kalia in
Current site
Google Scholar
PubMed
Close
,
Priyanka Sankhyan Department of Chemistry, Himachal Pradesh University, Shimla, Himachal Pradesh, 171005, India

Search for other papers by Priyanka Sankhyan in
Current site
Google Scholar
PubMed
Close
,
R. Puri Department of Chemistry, Himachal Pradesh University, Shimla, Himachal Pradesh, 171005, India

Search for other papers by R. Puri in
Current site
Google Scholar
PubMed
Close
, and
J. Christopher R&D, Indian Oil Corporation, Faridabad, Haryana, India

Search for other papers by J. Christopher in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Non-isothermal techniques, i.e. thermogravimetry (TG) and differential scanning calorimetry (DSC), have been applied to investigate the thermal behaviour of carbaryl (1-naphthyl-N-methylcarbamate = 1-Naph-N-Mecbm) and its complexes, M(1-Naph-N-Mecbm)4X2, where M = Cu, X = Cl, NO3 and CH3COO and M = Zn, X = Cl. Carbaryl and Zn(1-Naph-N-Mecbm)4Cl2 complex exhibit two-stage thermal decomposition while the copper(II) complexes exhibit three and four-stage decomposition in their TG curves. The nature of the metal ion has been found to play highly influential role on the nature of thermal decomposition products as well as energy of activation ‘E∗’. The presence of different anions does not seem to alter the thermal decomposition patterns. The complexes display weak to medium intensity exothermic and endothermic DSC curves, while the free ligand exhibits two endothermic peaks. The kinetic and thermodynamic parameters namely, the energy of activation ‘E∗’, the frequency factor ‘A’ and the entropy of activation ‘S∗’ etc. have been rationalized in relation to the bonding aspect of the carbaryl ligand. The nature and chemical composition of the residues of the decomposition steps have been studied by elemental analysis and FTIR data.

  • 1. Ali, RM-A, Mohsen, R, Parisa, N. Solvent-free preparation of primary carbamates. Turk J Chem. 2006;30:269276.

  • 2. Dibenedetto, A, Aresta, M, Fragale, C, Narracci, M. Reaction of silylalkylmono- and silylalkyldi-amines with carbon dioxide: evidence of formation of inter- and intra-molecular ammonium carbamates and their conversion into organic carbamates of industrial interest under carbon dioxide catalysis. Green Chem. 2006;4:439443. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3. Gupte, SP, Shivarkar, AB, Chaudhari, RV. Carbamate synthesis by solid-base catalyzed reaction of disubstituted ureas and carbonates. J Chem Soc Chem Commun. 2001;24:26202621.

    • Search Google Scholar
    • Export Citation
  • 4. Motolcsy G , Nadasy M, Andriska V, editors. Pesticide chemistry. Budapest: Academiai Kiado; 1988. p. 90.

  • 5. Thompson, A. Pest control on field vegetables threatened by the loss of organophosphorus (OP) and carbamate insecticides. Pestic Outlook. 2002;13:8486. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6. Martin, LL, Davis, L, Klein, JT, Nemoto, P, Olsen, GE, Bores, GM, Camacho, F, Petko, WW, Rush, DK, Selk, D, Smith, CP, Vargas, HM, Wilson, JT, Effland, RC, Fink, DM. Synthesis and preliminary structure-activity relationships of 1-[(3-fluoro-4-pyridinyl)amino]-3-methyl-1H-indol-5-yl methyl carbamate (P10358), a novel acetylcholinesterase inhibitor. Bioorg Med Chem Lett. 1997;7:157162. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7. Feldmen, D, Barbalata, A. Synthetic polymers, technology, properties, applications. London: Chapman and Hall; 1996 273.

  • 8. Jensen AT . Process for the preparation of organic isocyanates. US Patent No. 5,449,817; 1995.

  • 9. Daly, NJ, Ziolkowski, F. The thermal decompositions of carbamates. IV. The ethylN-methyl-carbamate system. Int J Chem Kinet. 1980;12:241252. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10. Kim, CK, Kim, DJ, Zhang, H, Hsieh, Y-H, Lee, B-S, Lee, HW, Kim, CK. Substituent effects on the gas-phase pyrolyses of 2-substituted ethyl N,N-dialkylcarbamates: a theoretical study. Bull Korean Chem Soc. 2007;28:10311034. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11. Kalia SB , Priyanka S. Transition element complexes of carbaryl and their synthesis. Indian Patent, Application Number 2194/DEL02009.

    • Search Google Scholar
    • Export Citation
  • 12. Mohan J . Organic spectroscopy, principles and applications. 2nd ed. 2009.

  • 13. Coats, AW, Redfern, JP. Kinetic parameters from thermogravimetric data. Nature. 1964;201:6869. .

  • 14. Katib, SMA. Thermal decomposition of nickel(II), palladium(II), and platinum(II) complexes of N-allyl-N′-pyrimidin-2ylthiourea. J Therm Anal Calorim. 2011;103:647652. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15. Avsar, G, Altinel, H, Yilmaz, MK, Guzel, B. Synthesis, characterization, and thermal decomposition of fluorinated salicylaldehyde Schiff base derivatives (Salen) and their complexes with copper(II). J Therm Anal Calorim. 2010;101:199203. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16. Zsakó, J, Várhelyi, C, Kékedy, E. Kinetics and mechanism of substitution reactions of complexes—III: thermal decomposition of complexes of the type [Co(DH)2Am2]X. J Inorg Nucl Chem. 1966;28:26372646. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17. Khadikar, PV, Ali, V, Heda, B. Kinetics of thermal dehydration of some bis-(4-aminosalicylato)-diaquo complexes of transition metal ions. Thermochim Acta. 1984;82:253361. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18. Prabhumirashi, LS, Khoje, JK. Thermogravimetric and differential thermal analysis of bipyridyl,ortho-phenylenediamine and 1,10 phenanthroline complexes of some Cu(II) salts. Indian J Chem. 2004;43A:299302.

    • Search Google Scholar
    • Export Citation
  • 19. Sawney, SS, Bansal, AK. Kinetics of the non-isothermal decomposition of some metal derivatives of 8-quinolinol and its dihalo derivatives from DTG/DTA curves. Thermochim Acta. 1983;66:347350. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20. Chourasia, P, Suryesh, KK, Mishra, AP. Synthesis and structural investigation of some mixed-ligand selenito complexes of cobalt(II). Proc Indian Acad Sci (Chem Sci). 1993;105:173181.

    • Search Google Scholar
    • Export Citation
  • 21. Aslanidis, P, Gaki, V, Chrissafis, K, Lalia-Kantouri, M. Luminescence and thermal behavior by simultaneous TG/DTG–DTA coupled with MS of neutral copper(I) complexes with heterocyclic thiones. J Therm Anal Calorim. 2011;103:525531. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
1
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Apr 2024 3 0 0
May 2024 12 0 0
Jun 2024 23 0 0
Jul 2024 30 0 0
Aug 2024 39 0 0
Sep 2024 10 0 0
Oct 2024 0 0 0