View More View Less
  • 1 Physics Department, College of Science, Qassim University, P.O. Box 6644, Buryadh 51452, Kingdom of Saudi Arabia
  • | 2 Department of Physics, Faculty of Science, Al-Azahar University, Assiut 71542, Egypt
  • | 3 Physics Department, Faculty of Science, Sohag University, Sohag 82524, Egypt
Restricted access

Abstract

Glasses with compositions 60B2O3–40PbO, 60B2O3–40Bi2O3, and 60B2O3–30Bi2O3–10PbO have been prepared and studied by differential thermal analysis. The crystallization kinetics of the glasses was investigated under non-isothermal conditions. From dependence of the glass transition temperature (Tg) on the heating rate, the activation energy for the glass transition was derived. Similarly the activation energy of the crystallization process was determined. Thermal stability of these glasses were achieved in terms of the characteristic temperatures, such as the glass transition temperature, Tg, the onset temperature of crystallization, Tin, the temperature corresponding to the maximum crystallization rate, Tp, beside the kinetic parameters, K(Tg) and K(Tp). The results revealed that the 60B2O3–40PbO is more stable than the others. The crystallization mechanism is characterized for glasses. The phases at which the glass crystallizes after the thermal process have been identified by X-ray diffraction.

  • 1. Fukawa, Y, Matsuda, Y, Kawashima, M, Kojima, S. Determination of complex-specific heat and fragility of sodium borate glasses by temperature-modulated DSC. J Therm Anal Calorim. 2010;99:3944. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2. Venkataraman, B, Varma, K. Structural and optical properties of (100−x)(Li2B4O7)−x(SrO–Bi2O3–0.7Nb2O5–0.3V2O5) glasses and glass nanocrystal composites. Opt Mater. 2006;28:14231429. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3. Dutta, A, Ghosh, A. Structural and optical properties of lithium barium bismuthate glasses. J Non-Cryst Solids. 2007;353:13331334. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4. Stone, CE, Wright, AC, Sinclair, RN, Feller, SA, Affatigato, M, Hogan, DL, Nelson, ND, Vira, C, Dimitriev, YB, Gattef, EM, Ehrt, D. Structure of bismuth borate glasses. Phys Chem Glasses. 2000;41:409412.

    • Search Google Scholar
    • Export Citation
  • 5. Wang, S, Tan, Z, Li, Y, Sun, L, Zhang, T. Synthesis, characterization and thermal analysis of polyaniline/ZrO2 composites. Thermochim Acta. 2006;441:191194. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6. Zheng, H, Mackenzie, J. Bi4Sr3Ca3 Cu4O16 glass and superconducting glass ceramics. Phys Rev B. 1988;38:71667168. .

  • 7. Hu, Y, Lin, U-L, Liu, N-H. Effect of copper valence on the glass structure and crystallization behavior of Bi–Pb–Cu–O glasses. Mater Chem Phys. 1997;49:115119. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8. Szumera, M, Wacławska, I, Olejniczak, Z. Influence of B2O3 on the structure and crystallization of soil active glasses. J Therm Anal Calorim. 2010;99:879886. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9. Onishi, M, Kyoto, M, Watanabe, M. Properties of Bi–Pb–Sr–Ca–Cu–O glass-ceramic fibers formed by glass-drawing method. Jpn J Appl Phys. 1991;30:L988L990. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10. Yinnon, H, Uhlmann, DR. Applications of thermoanalytical techniques to the study of crystallization kinetics in glass-forming liquids, part I: theory. J Non-Cryst Solids. 1983;54:253275. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11. Simon, S, Todea, M. Spectroscopic study on iron doped silica-bismuthate glasses and glass ceramics. J Non-Cryst Solids. 2006;352:29472951. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12. Pan, Z, Morgan, SH, Long, BH. Raman scattering cross-section and non-linear optical response of lead borate glasses. J Non-Cryst Solids. 1995;185:127128. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13. Wu, JM, Huang, HL. Microwave properties of zinc, barium and lead borosilicate glasses. J Non-Cryst Solids. 1999;260:116119. .

  • 14. Srivastava, P, Rai, SB, Rai, DK. Effect of lead oxide on optical properties of Pr3+ doped some borate based glasses. J Alloys Compd. 2004;368:18. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15. Lower, NP, McRae, JL, Feller, HA, Betzen, AR, Kapoor, S, Affatigato, M, Feller, SA. Physical properties of alkaline-earth and alkali borate glasses prepared over an extended range of compositions. J Non-Cryst Solids. 2001;293:669675. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16. Liu, HS, Chin, TS, Yung, SW. FTIR and XPS studies of low-melting PbO–ZnO–P2O2 glasses. Mater Chem Phys. 1997;50:111. .

  • 17. Honma, T, Benino, Y, Fujiwara, T, Sato, R, Komatsu, T. New optical nonlinear crystallized glasses and YAG laser-induced crystalline dot formation in rare-earth bismuth borate system. Opt Mater. 2002;20:2733. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18. Honma, T, Benino, Y, Fujiwara, T, Komatsu, T, Sato, R. Nonlinear optical crystal-line writing in glass by yttrium aluminium garnet laser irradiation. Appl Phys Lett. 2003;82:892893. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19. Dietzel, A. Glass structure and glass properties. Glasstech. 1968;22:41.

  • 20. Sakka, S, Mackenzie, JD. Relation between apparent glass transition temperature and liquids temperature for inorganic glasses. J Non-Cryst Solids. 1971;6:145162. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21. Hruby, A. Evaluation of glass-forming tendency by means of DTA. Czech J Phys B. 1972;22:11871193. .

  • 22. Saad, M, Poulain, M. Glass forming ability criterion. Mater Sci Forum. 1987;19:11 .

  • 23. Surinach, S, Baro, MD, Clavaguera-Mora, MT, Clavaguera, N. Glass formation and crystallization in the GeSe2–Sb2Te3 system. J Mater Sci. 1984;19:30053012. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24. Hu, L, Jiang, Z, Chin, J. A new criterion for crystallization of glass. Ceram Soc. 1990;18:315321.

  • 25. Shaaban, ER, Shapaan, M, Saddeek, YB. Structural and thermal stability criteria of Bi2O3–B2O3 glasses. J Phys: Condens Matter. 2008;20:155108155109. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26. Baia, L, Stefan, R, Kiefer, W, Popp, J, Simon, S. Structural investigations of copper doped B2O3–Bi2O3 glasses with high bismuth oxide content. J Non-Cryst Solids. 2002;303:379386. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27. Lide, D. CRC handbook of chemistry and physics. 84 Boca Raton: CRC Press; 2004.

  • 28. Vazquez, J, Lopez-Alemany, PL, Villares, P, Jimenez-Garay, R. Generalization of the Avrami equation for the analysis of nonisothermal transformation kinetics. Application to the crystallization of the Cu0.20As0.30Se0.50 alloy. J Phys Chem Solids. 2000;61:493500. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29. Mehta, N, Agarwal, P, Kumar, A. Calorimetric studies of glass forming ability and thermal stability in a-Se 80Te 19.5M 0.5(M=Ag, Cd, In, Sb) alloys. Eur Phys J Appl Phys. 2005;31:153156. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30. Shaaban, ER, Dessouky, MT, Abousehly, AM. Glass forming tendency in ternary GexAs20Te80−x glasses examined using differential scanning calorimetry. J Phys: Condens Matter. 2007;19:096212-11 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31. Johnson, WA, Mehl, RF. Reaction kinetics in processes of nucleation and growth. Trans Am Inst Min Met Eng. 1939;135:416458.

  • 32. Avrami, M. Kinetics of phase change. II transformation-time relations for random distribution of nuclei. J Chem Phys. 1940;8:212224. .

  • 33. Avrami, M. Granulation, phase change, and microstructure kinetics of phase change. III. J Chem Phys. 1941;9:177184. .

  • 34. Arora, A, Shaaban, ER, Singh, K, Pandey, OP. Non-isothermal crystallization kinetics of ZnO–BaO–B2O3–SiO2 glass. J Non-Cryst Solids. 2008;354:39443951. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35. Goel, A, Shaaban, ER, Tulyaganov, DU, Ferreira, JMF. Study of crystallization kinetics in glasses along the diopside–Ca-Tschermak join. J Am Ceram Soc. 2008;91:26902698. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36. Matusita, K, Saka, S. Kinetic study of crystallization of glass by differential thermal analysis—criterion on application of Kissinger plot. J Non-Cryst Solids. 1980;38–39:741746. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37. Mahadevan, S, Giridhar, A, Sing, AK. Calorimetric measurements on As–Sb–Se glasses. J Non-Cryst Solids. 1986;88:1134. .

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)