Authors:
Xuehang Wu School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China

Search for other papers by Xuehang Wu in
Current site
Google Scholar
PubMed
Close
,
Wenwei Wu School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China

Search for other papers by Wenwei Wu in
Current site
Google Scholar
PubMed
Close
,
Xuemin Cui School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China

Search for other papers by Xuemin Cui in
Current site
Google Scholar
PubMed
Close
, and
Sen Liao School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China

Search for other papers by Sen Liao in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The precursor of nanocrystalline BiFeO3 was obtained by solid-state reaction at low heat using Bi(NO3)3·5H2O, FeSO4·7H2O, and Na2CO3·10H2O as raw materials. The nanocrystalline BiFeO3 was obtained by calcining the precursor. The precursor and its calcined products were characterized by differential scanning calorimetry (DSC), Fourier transform-infrared spectroscopy (FT-IR), X-ray powder diffraction (XRD), scanning electron microscopy (SEM), and vibrating sample magnetometer (VSM). The data showed that highly crystallization BiFeO3 with rhombohedral structure (space group R3c (161)) was obtained when the precursor was calcined at 873 K for 2 h. The thermal process of the precursor experienced three steps, which involve the dehydration of adsorption water, hydroxide, and decomposition of carbonates at first, and then crystallization of BiFeO3, and at last decomposition of BiFeO3 and formation of orthorhombic Bi2Fe4O9. The mechanism and kinetics of the crystallization process of BiFeO3 were studied using DSC and XRD techniques, the results show that activation energy of the crystallization process of BiFeO3 is 126.49 kJ mol−1, and the mechanism of crystallization process of BiFeO3 is the random nucleation and growth of nuclei reaction.

  • 1. Michel, C, Moreau, JM, Achenbach, GD, Gerson, R, James, WJ. 1969 The atomic structure of BiFeO3. Solid State Commun. 7:701704. .

  • 2. Smolenskii, GA, Isupov, VA, Agranovskaya, AI, Krainik, NN. New ferroelectrics of complex composition. Sov Phys Solid State. 1961;2:26512654.

    • Search Google Scholar
    • Export Citation
  • 3. Smolenskii, GA, Yudin, VM, Sher, ES, Stolypin, YE. Antiferromagnetic properties of some perovskites. Sov Phys JETP. 1963;16:622624.

    • Search Google Scholar
    • Export Citation
  • 4. Moreau, JM, Michel, C, Gerson, R, James, WJ. Ferroelectric BiFeO3 X-ray and neutron diffraction study. J Phys Chem Solids. 1971;32:13151320. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5. Bucci, JD, Robertson, BK, James, WJ. The precision determination of the lattice parameters and the coefficients of thermal expansion of BiFeO3. J Appl Cryst. 1972;5:187191. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6. Kubel, F, Schmid, H. 1990 Structure of a ferroelectric and ferroelastic monodomain crystal of the perovskite BiFeO3. Acta Cryst. 46:698702. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7. Palkar, VR, Pinto, R. BiFeO3 thin films: novel effects. J Phys. 2002;58:10031008.

  • 8. Wang, YP, Zhou, L, Zhang, MF, Chen, XY, Liu, JM, Liu, ZG. 2004 Room-temperature saturated ferroelectric polarization in BiFeO3 ceramics synthesized by rapid liquid phase sintering. Appl Phys Lett. 84:17311733. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9. Ederer, C, Spaldin, NA. 2005 Weak ferromagnetism and magnetoelectric coupling in bismuth ferrite. Phys Rev B. 71:060401060404. .

  • 10. Sosnowska, I, Neumaier, TP, Steichele, E. Spiral magnetic ordering in bismuth ferrite. J Phys C Solid State Phys. 1982;15:835846. .

  • 11. Jia, DC, Xu, JH, Ke, H, Wang, W, Zhou, Y. 2009 Structure and multiferroic properties of BiFeO3 powders. J Eur Ceram Soc. 29:30993103. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12. Park, TJ, Papaefthymiou, GC, Viescas, AJ, Moodenbaugh, AR, Wong, SS. 2007 Size-dependent magnetic properties of single-crystalline multiferroic BiFeO3 nanoparticles. Nano Lett. 7:766772. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13. Mazumder, R, Sujatha Devi, P, Bhattacharya, D, Choudhury, P, Sen, A, Raja, M. Ferromagnetism in nanoscale BiFeO3. Appl Phys Lett. 2007;91:062510062512. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14. Lee, YH, Wu, JM, Lai, CH. 2006 Influence of La doping in multiferroic properties of BiFeO3 thin films. Appl Phys Lett. 88:042903042905. .

  • 15. Lebeugle, D, Colson, D, Forget, A, Viret, M. 2007 Very large spontaneous electric polarization in BiFeO3 single crystals at room temperature and its evolution under cycling fields. Appl Phys Lett. 91:022907022909. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16. Jiang, QH, Nan, CW, Wang, Y, Liu, YH, Shen, ZJ. 2008 Synthesis and properties of multiferroic BiFeO3 ceramics. J Electroceram. 21:690693. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17. Yuan, GL, Or, SW, Wang, YP, Liu, ZG, Liu, JM. 2006 Preparation and multi-properties of insulated single-phase BiFeO3 ceramics. Solid State Commun. 138:7681. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18. Choudhary, RNP, Pradhan, DK, Bonilla, GE, Katiyar, RS. 2007 Effect of La-substitution on structural and dielectric properties of Bi(Sc1/2Fe1/2)O3 ceramics. J Alloys Compd. 437:220224. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19. Ke, H, Wang, W, Wang, YB, Xu, JH, Jia, DC, Lu, Z, Zhou, Y. 2011 Factors controlling pure-phase multiferroic BiFeO3 powders synthesized by chemical co-precipitation. J Alloys Compd. 509:21922197. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20. Das, N, Majumdar, R, Sen, A, Maiti, HS. 2007 Nanosized bismuth ferrite powder prepared through sonochemical and microemulsion techniques. Mater Lett. 61:21002104. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21. Szafraniak, I, Polomska, M, Hilczer, B, Pietraszko, A, Kepiński, L. 2007 Characterization of BiFeO3 nanopowder obtained by mechanochemical synthesis. J Eur Ceram Soc. 27:43994402. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22. Basu, S, Pal, M, Chakravorty, D. 2008 Magnetic properties of hydrothermally synthesized BiFeO3 nanoparticles. J Mag Mag Mater. 320:33613365. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23. Cho, CM, Noh, JH, Cho, IS, An, JS, Hong, KS, Kim, JY. Low-temperature hydrothermal synthesis of pure BiFeO3 nanopowders using triethanolamine and their applications as visible-light photocatalysts. J Am Ceram Soc. 2008;91:37533755. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24. Fruth, V, Mitoseriu, L, Berger, D, Ianculescu, A, Matei, C, Preda, S, Zaharescu, M. 2007 Preparation and characterization of BiFeO3 ceramic. Prog Solid State Chem. 35:193202. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25. Farhadi, S, Zaidi, M. Bismuth ferrite (BiFeO3) nanopowder prepared by sucrose-assisted combustion method: a novel and reusable heterogeneous catalyst for acetylation of amines, alcohols and phenols under solvent-free conditions. J Mol Catal A Chem. 2009;299:1825. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26. Ghosh, S, Dasgupta, S, Sen, A, Himadri Sekhar Maiti, HS. 2005 Low temperature synthesis of bismuth ferrite nanoparticles by a ferrioxalate precursor method. Mater Res Bull. 40:20732079. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27. Kim, JK, Kim, SS, Kim, WJ. 2005 Sol–gel synthesis and properties of multiferroic BiFeO3. Mater. Lett. 59:40064009. .

  • 28. Xu, JH, Ke, H, Jia, DC, Wang, W, Zhou, Y. 2009 Low-temperature synthesis of BiFeO3 nanopowders via a sol–gel method. J Alloys Compd. 472:473477. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29. Popa, M, Crespo, D, Calderon-Moreno, JM, Preda, S. Synthesis and structural characterization of single-phase BiFeO3 powders from a polymeric precursor. J Am Ceram Soc. 2007;90:27232727. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30. Selbach, SM, Einarsrud, MA, Tybell, T, Grande, T. Synthesis of BiFeO3 by wet chemical methods. J Am Ceram Soc. 2007;90:34303434. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31. Wei, J, Xue, DS. Low-temperature synthesis of BiFeO3 nanoparticles by ethylenediaminetetraacetic acid complexing sol–gel process. Mater Res Bull. 2008;43:33683373. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32. Xian, T, Yang, H, Shen, X, Jiang, JL, Wei, ZQ, Feng, WJ. Preparation of high-quality BiFeO3 nanopowders via a polyacrylamide gel route. J Alloys Compd. 2009;480:889892. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33. He, XB, Lian Gao, L. 2009 Synthesis of pure phase BiFeO3 powders in molten alkali metal nitrates. Ceram. Int. 35:975978. .

  • 34. Navarro, MC, Lagarrigue, MC, De Paoli, JM, Carbonio, RE, Gómez, MI. A new method of synthesis of BiFeO3 prepared by thermal decomposition of Bi[Fe(CN)6]·4H2O. J Therm Anal Calorim. 2010;102:655660. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35. Wu, XH, Wu, WW, Li, SS, Cui, XM, Liao, S. Kinetics and thermodynamics of thermal decomposition of NH4NiPO4·6H2O. J Therm Anal Calorim. 2011;103:805812. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36. Kissinger, HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:17021706. .

  • 37. Avrami, M. Kinetics of phase change. I general theory. J Chem Phys. 1939;7:11031112. .

  • 38. Avrami, M. Kinetics of phase change. II transformation-time relations for random distribution of nuclei. J Chem Phys. 1940;8:212224. .

  • 39. Avrami, M. 1941 Granulation, phase change, and microstructure kinetics of phase change. III. J Chem Phys. 9:177184. .

  • 40. Wu, XH, Wu, WW, Liu, C, Li, SS, Liao, S, Cai, JC. 2010 Synthesis of layered sodium manganese phosphate via low-heating solid-state reaction and its properties. Chin J Chem. 28:23942398. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41. Liu, C, Wu, XH, Wu, WW, Cai, JC, Liao, S. Preparation of nanocrystalline LiMnPO4 via a simple and novel method and its isothermal kinetics of crystallization. J Mater Sci. 2011;46:24742478. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42. Li, ZJ, Shen, XQ, Feng, X, Wang, PY, Wu, ZS. Non-isothermal kinetics studies on the thermal decomposition of zinc hydroxide carbonate. Thermochim Acta. 2005;438:102106. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43. Carvalho, TT, Tavares, PB. 2008 Synthesis and thermodynamic stability of multiferroic BiFeO3. Mater Lett. 62:39843986. .

  • 44. Carmen Paraschiv, B. Jurca, Adelina Ianculescu, and Oana Carp. Synthesis of nanosized bismuth ferrite (BiFeO3) by a combustion method starting from Fe(NO3)3·9H2O–Bi(NO3)3·9H2O–glycine or urea systems. J Therm Anal Calorim. 2008;94:411416. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45. Takei, T, Kameshima, Y, Yasumori, A, Okada, K. 2001 Crystallization kinetics of mullite from Al2O3–SiO2 glasses under non-isothermal conditions. J Eur Ceram Soc. 21:24872493. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46. Johnson, BR, Kriven, WM, Schneider, J. 2001 Crystal structure development during devitrification of quenched mullite. J Eur Ceram Soc. 21:25412562. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47. Boonchom, B, Danvirutai, C. Kinetics and thermodynamics of thermal decomposition of synthetic AlPO4·2H2O. J Therm Anal Calorim. 2009;98:771777. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
1
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2024 11 0 0
Jul 2024 73 0 0
Aug 2024 52 0 0
Sep 2024 38 0 0
Oct 2024 186 1 0
Nov 2024 96 1 0
Dec 2024 2 0 0