The infrared spectrum of polycaprolactone has been recorded as a function of temperature in the range where melting and crystallisation of the polymer can occur. Examination of the carbonyl band of the spectra reveals a clear morphological sensitivity; heating the semi-crystalline polymer through the melting region results in a decrease in the intensity of the crystalline component of the carbonyl band. Accordingly, there was a subsequent increase in intensity of the crystalline carbonyl band on cooling. To enable comparison of these findings with a more conventional method of thermal analysis, similar experiments were conducted using a differential scanning calorimeter. The heated ATR accessory adopted for use in the FTIR spectrometer imposed significant limitations in the range of possible heating and cooling rates, but when these rates were carefully matched between FTIR and DSC, close correlation between the melting point and onset of re-crystallisation was observed. The results confirm that FTIR can be used as an alternative, if more laborious, way of investigating melting and re-crystallisation.
1. Zhu, G, Xu, Q, Qin, R, Yan, H, Liang, G. 2005 Effect of [gamma]-radiation on crystallization of polycaprolactone. Radiat Phys chem. 74:42–50. .
2. Hutmacher, DW. Scaffolds in tissue engineering bone and cartilage. Biomaterials. 2000;21:2529–2543. .
3. Acierno, S, Di Maio, E, Iannace, S, Grizzuti, N. 2006 Structure development during crystallization of polycaprolactone. Rheol Acta. 45:387–392. .
4. Jenkins, MJ, Harrison, KL. 2008 The effect of crystalline morphology on the degradation of PCL in a solution of PBS and lipase. Polym Adv Technol. 19:1901–1906. .
5. Coleman, MM, Zarian, J. 1979 Fourier-transform infrared studies of polymer blends. II. Poly(∊-caprolactone)-poly(vinyl chloride) system. J Polym Sci. 17:837–850.
6. Wang, J, Cheung, MK, Mi, Y. Miscibility and morphology in crystalline/amorphous blends of poly(caprolactone)/poly(4-vinylphenol) as studied by DSC, FTIR, and 13C solid state NMR. Polymer. 2002;43:1357–1364. .
7. Jiang, H, Wu, P, Yang, Y. Variable Temperature FTIR Study of Poly(ethylene-co-vinyl alcohol)-graft-poly(∊-caprolactone). Biomacromolecules. 2003;4:1343–1347. .
8. Yong, H, Yoshio, I. 2000 Novel FTIR method for determining the crystallinity of poly(∊-caprolactone). Polym Int. 49:623–626. .
9. Xu, J, Guo, B-H, Yang, R, et al. In situ FTIR study on melting and crystallization of polyhydroxyalkanoates. Polymer. 2002;43:6893–6899. .
10. Kansiz, M, Domínguez-Vidal, A, McNaughton, D, Lendl, B. Fourier-transform infrared (FTIR) spectroscopy for monitoring and determining the degree of crystallisation of polyhydroxyalkanoates (PHAs). Anal Bioanal Chem. 2007;388:1207–1213. .