View More View Less
  • 1 Department of Physics, Hindustan College of Science & Technology, Farah, Mathura, UP, 281122, India
  • | 2 Department of Physics, R.B.S. College, Agra, UP, 282002, India
Restricted access

Abstract

The thermally stimulated charge relaxation properties of polycarbonate (PC) filled with SiO2 nanofiller were studied by means of thermally stimulated discharge current (TSDC). The nanocomposite samples were further characterized by UV–vis spectroscopy, scanning electron microscopy, energy dispersive X-ray spectra, and differential scanning calorimetry (DSC) techniques to investigate the dispersion of nanofillers in polymer matrix and glass transition temperature. All pristine and nanocomposites samples of thickness about 25 μm were prepared using solution mixing method. The suitable weight percentage of SiO2 nanofillers has been chosen to prevent the nonuniform dispersion. TSDC measurement of PC (Pristine) and PC+ (7% SiO2) shows the single peak, while TSDC characteristic of other nanocomposites are showing two peaks. The higher temperature TSDC peak of pristine and nanocomposites samples is originated due to the charge relaxation from shallower and deeper trapping sites, however, low temperature peak is caused by dipolar relaxation of charge carriers. Since the position of higher temperature TSDC peak is generally an analysis of glass transition temperature of polymer/polymer nanocomposites. The authors have observed that the temperature of this peak is almost same as the Tg measured by DSC with 0 to ±5% variation. This article presents the deeper understanding of charge relaxation mechanism caused by SiO2 nanofillers in polycarbonate.

  • 1. Wang, D, Song, C. Controllable synthesis of ZnO nanorod and prism arrays in a large area. J Phys Chem. 2005;109:1269712700. .

  • 2. Saujanya, C, Radhakrishnan, S. Structure development and crystallization behavior of PP/nanoparticulate composite. Polymer. 2001;42:67236731. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3. Yano, K, Usuki, A, Yurauchi, T, Kamigaito, O. Synthesis and properties of polyimide–clay hybrid. J Polym Sci Part A Polym Chem. 1993;3:24932498. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4. Wu, XD, Wang, DP. Preparation and characterization of stearate-capped titanium dioxide nanoparticles. J Colloid Interf Sci. 2000;222:3740. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5. Hu, ZS, Oskam, G, Searson, PC. Influence of solvent on the growth of ZnO nanoparticles. J Colloid Interf Sci. 2003;263:454460. .

  • 6. Zhang, C, Mason, R, Stevens, GC. Dielectric properties of alumina polymer nanocomposites. Electr Insul Dielec Phenom. 2005;16:721724.

    • Search Google Scholar
    • Export Citation
  • 7. Shen, Y, Lin, YH, Nan, CW. Interfacial effect on dielectric properties of polymer nanocomposites filled with core/shell-structured particles. Adv Funct Mater. 2007;17:24052410. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8. Ning, H, Masuda, Z, Yan, C, Yamamoto, G, Fukunaga, H, Hashida, T. The electrical properties of polymer nanocomposites with carbon nanotube fillers. Nanotechnology. 2008;19:215701215710. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9. Koo, JH. Polymer nanocomposites: processing, characterization and application. New York: McGraw-Hill Professional; 2006 33.

  • 10. Riande, E, Daz-Calleja, R. Electrical properties of polymers. Boca Raton: CRC Press; 2004 374 .

  • 11. Forrest, JA, Dalnoki-Veress, K, Dutcher, JR. Interface and chain confinement effects on the glass transition temperature of thin polymer films. Phys Rev. 1997;56:57055716. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12. Fukao, K, Miyamoto, Y. Glass transition temperature and dynamics of a relaxation process in thin polymer films. Europhys Lett. 1999;46:649654. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13. Gun’ko, VM, Zarko, VI, Goncharuk, EV, Andriyko, LS, Turov, VV, Nychiporuk, YM, Leboda, R, Zięba, JS, Gabchak, AL, Osovskii, VD, Ptushinskii, YG, Yurchenko, GR, Mishchuk, OA, Gorbik, PP, Pissis, P, Blitz, JP. TSDC spectroscopy of relaxational and interfacial phenomena. Adv Colloid Interf Sci. 2007;131:189. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14. Kalogeras, IM, Dova, AV. Sub-glassy relaxation modes in PMMA and PMMA+SiO2 hosts of non-polar perylene derivatives. Mat Res Innovat. 2003;7:263268. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15. Gaur, MS, Shukla, P, Tiwari, RK, Tanwar, A, Singh, SP. New approach for the measurement of glass transition temperature of polymer. Ind J Pure Appl Phys. 2008;46:535539.

    • Search Google Scholar
    • Export Citation
  • 16. Turnhout, JV. Thermally stimulated discharge of electrets Sessler, GM, eds. Topics in applied physics (Electrets). Berlin: Springer-Verlag; 1980.

    • Search Google Scholar
    • Export Citation
  • 17. Saxena, P, Gaur, MS, Khare, PK. Effect of blending with polysulfone on thermally stimulated discharge behavior of polyvinylidenefluoride films. Polym Plast Technol Eng. 2009;48:415422. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18. Barabanova, AI, Shevnin, PL, Pryakhina, TA, Bychko, KA, Kazantseva, V, Zavin, BG, Vygodskii, YS, Askadskii, AA, Philippova, OE, Khokhlov, AR. Nanocomposites based on epoxy resin and silicon dioxide particles. Polym Sci Ser A. 2008;50:808819. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19. Delbreilh, L, Dargent, E, Grenet, J, Saiter, JM, Bernes, A, Lacabanne, C. Study of poly(bisphenol A carbonate) relaxation kinetics at the glass transition temperature. Euro Polym J. 2007;43:249254. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20. Nelson, JK, Fothergill, JC. Internal charge behaviour of nanocomposites. Nanotechnology. 2004;15:586595. .

  • 21. Montanari, GC. Modification of electrical properties and performance of EVA and PP insulation through nanostructure by organophilic silicates. IEEE Trans Diel Elect Ins. 2004;11:754762. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22. Roy, M, Nelson, JK, MacCrone, RK, Schadler, LS, Reed, CW, Keefe, R. Polymer nanocomposite dielectrics-the role of the interface. IEEE Trans Diel Elect Ins. 2005;12:629643. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23. Lewis, TJ. Nanometric dielectrics. IEEE Trans Diel Elect Ins. 1994;5:812825. .

  • 24. Nelson, JK, Hu, Y. Nanocomposite dielectrics—properties and implications. J Phys D Appl Phys. 2005;38:213222. .

  • 25. Tanaka, T. Dielectric nanocomposites with insulating properties. IEEE Trans Diel Elect Ins. 2005;12:914928. .

  • 26. Delbreilh, L, Negahban, M, Benzohra, M, Lacabanne, C, Saiter, JM. Glass transition investigated by a combined protocol using thermostimulated depolarization currents and differential scanning calorimetry. J Therm Anal Calorim. 2009;96:865871. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27. Gaur, MS, Rathore, BS, Singh, PK, Indolia, A, Awasthi, AM, Bhardwaj, S. Thermally stimulated current and differential scanning calorimetry spectroscopy for the study of polymer nanocomposites. J Therm Anal Calorim. 2010;101:315321. .

    • Crossref
    • Search Google Scholar
    • Export Citation

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2021 5 0 0
Jul 2021 0 0 0
Aug 2021 2 0 0
Sep 2021 2 0 0
Oct 2021 2 0 0
Nov 2021 0 0 0
Dec 2021 0 0 0