Authors:
Liping Li Heilongjiang Key Laboratory of Molecular Design and Preparation of Flame Retarded Materials, College of Science, Northeast Forestry University, Harbin 150040, China

Search for other papers by Liping Li in
Current site
Google Scholar
PubMed
Close
,
Qingwen Wang MOE Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin 150040, China

Search for other papers by Qingwen Wang in
Current site
Google Scholar
PubMed
Close
, and
Chuigen Guo MOE Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin 150040, China

Search for other papers by Chuigen Guo in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Wood flour/polypropylene composites (WPC) were prepared by melt extruding with different wood flour (WF) loadings. The non-isothermal crystallization and melting was studied with different WF loadings, for W40P60 and W40P60M6, the melting was investigated after non-isothermal and isothermal crystalline. Comparing with neat polypropylene, the melting behavior of the composites, both non-isothermally and isothermally, was investigated by differential scanning calorimetry (DSC). The results showed that WF was an effective heterogeneous nucleating agent, as evidenced by an increase in the crystallization temperature and the crystallinity for melt crystallization of PP with increasing WF content. For the non-isothermal samples, the origins of the double melting behaviors were discussed, based on the DSC results of PP. The XRD measurements confirmed that no crystalline transition existed during the non-isothermal crystallization process. With m-TMI-g-PP adding, due to compatibilization phenomenon were probably responsible for decreasing Tm, Xc. In the DSC scan after isothermal crystallization process, the single melting behaviors were found and each melting endotherm had a different origin.

  • 1. Bledzki, AK, Gassan, J. Composites reinforced with cellulose based fibres. Prog Polym Sci. 1999;24:221274. .

  • 2. Ng, ZS, Simon, LC, Elkamel, A. Renewable agricultural fibres as reinforcing fillers in plastics. J Therm Anal Calorim. 2009;96:8590. .

  • 3. Pracella, M, Chionna, D, Anguillesi, I, Kulinski, Z, Piorkowska, E. Functionalization, compatibilization and properties of polypropylene composites with hemp fibres. Compos Sci Technol. 2006;66:22182230. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4. Karnani, R, Krishnan, M, Narayan, R. Biofibre-reinforced polypropylene composites. Polym Eng Sci. 1997;37:476483. .

  • 5. Bledzki, AK, Letman, M, Viksne, A, Rence, L. A comparison of compounding processes and wood type for wood fibre–PP composites. Compos Part A Appl Sci Manuf. 2005;36:789797. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6. Sombatsompop, N, Yotinwattanakumtorn, C, Thongpin, C. Influence of type and concentration of maleic anhydride grafted polypropylene and impact modifiers on mechanical properties of PP/wood sawdust composites. J Appl Polym Sci. 2005;97:475484. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7. Renner, K, Móczó, J, Pukánszky, B. Deformation and failure of PP composites reinforced with lignocellulosic fibers: effect of inherent strength of the particles. Compos Sci Technol. 2009;69:16531659. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8. Hristov, V, Vasileva, S. Dynamic mechanical and thermal properties of modified poly(propylene) wood fiber composites. Macromol Mater Eng. 2003;288:798806. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9. Dányádi, L, Janecska, T, Szabó, Z, et al. Wood flour filled PP composites: compatibilization and adhesion. Compos Sci Technol. 2007;67:28382846. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10. Felix, JM, Gatenholm, P. The nature of adhesion in composites of modified cellulose fibers and polypropylene. J Appl Polym Sci. 1991;42:609620. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11. Kazayawoko, M, Balatinecz, JJ, Matuana, LM. Surface modification and adhesion mechanisms in wood fibre–polypropylene composites. J Mater Sci. 1999;34:61896199. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12. Zafeiropoulos, NE, Williams, DR, Baillie, CA. Engineering and characterisation of the interface in flax fibre/polypropylene composite materials. Part I. Development and investigation of surface treatments. Compos Part A Appl Sci Manuf. 2002;33:10831093. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13. Dányádi, L, Móczó, J, Pukánszky, B. Effect of various surface modifications of wood flour on the properties of PP/wood composites. Compos Part A Appl Sci Manuf. 2010;41:199206. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14. Lu, JZ, Wu, Q, Mcnabb, HS. Chemical coupling in wood fibre and polymer composites: a review of coupling agents and treatments. Wood Sci Technol. 2000;32:88104.

    • Search Google Scholar
    • Export Citation
  • 15. Gramlich, WM, Gardner, DJ, Neivandt, JD. Surface treatments of wood–plastic composites (WPCs) to improve adhesion. J Adhes Sci Technol. 2006;20:18731887. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16. Kim, H-S, Lee, B-H, Choi, S-W, Kim, S, Kim, H-J. The effect of types of maleic anhydride-grafted polypropylene(MAPP) on the interfacial adhesion properties of bio-flour-filled polypropylene composites. Compos Part A Appl Sci Manuf. 2007;38:14731482. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17. Bullions, TA, Gillespie, RA, Price-O’Brien, J, et al. The effect of maleic anhydride modified polypropylene on the mechanical properties of feather fiber, kraft pulp, polypropylene composites. J Appl Polym Sci. 2004;92: 6 37713783. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18. Qiu, WL, Takashi, E, Takahiro, H. Interfacial interaction, morphology, and tensile properties of a composite of highly crystalline cellulose and maleated polypropylene. J Appl Polym Sci. 2006;102:38303841. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19. Carlborn, K, Matuana, LM. Functionalization of wood particles through a reactive extrusion process. J Appl Polym Sci. 2006;101:31313142. .

  • 20. Qiu, WL, Zhang, FR, Endo, T, et al. Isocyanate as a compatibilizing agent on the properties of highly crystalline cellulose/polypropylene composites. J Mater Sci. 2005;40:36073614. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21. Karmarkar, A, Chauhan, SS, Jayant, M, et al. Mechanical properties of wood–fiber reinforced polypropylene composites: effect of a novel compatibilizer with isocyanate functional group. Compos Part A Appl Sci Manuf. 2007;38:227233. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22. Guo, CG, Wang, QW. Influence of m-isopropenyl-α, α-dimethylbenzyl isocyanate grafted polypropylene on the interfacial interaction of wood-flour/polypropylene composites. J Appl Polym Sci. 2008;5:30803086. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23. Ryszard, K, Maria, WP. Flammability and fire resistance of composites reinforced by natural fibers. Polym Adv Technol. 2008;19:446453. .

  • 24. Bouza, R, Marco, C, Ellis, G, Martín, Z, Gómez, MA, Barral, L. Analysis of the isothermal crystallization of polypropylene/wood flour composites. J Therm Anal Calorim. 2008;94: 1 119127. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25. Borysiak, S. A study of transcrystallinity in polypropylene in the presence of wood irradiated with gamma rays. J Therm Anal Calorim. 2010;101:439445. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26. Mantia, FPL, Morreale, M. Accelerated weathering of polypropylene/wood flour composites. Polym Degrad Stabil. 2008;93:12521258. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27. Ma LC , Li LP, Guo CG. Influence of m-isopropenyl-α, α-dimethylbenzyl isocyanate and styrene on non-isothermal crystallization behavior of polypropylene. J Therm Anal Calorim. 2010;101(3):11019.

    • Search Google Scholar
    • Export Citation
  • 28. Maity, J, Jacob, C, Das, CK, et al. Direct fluorination of Twaron fiber and the mechanical, thermal and crystallization behaviour of short Twaron fiber reinforced polypropylene composites. Compos Part A Appl Sci Manuf. 2008;39:825833. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29. Svoboda, P, Svobodova, D, Slobodian, P, et al. Crystallization kinetics of polypropylene/ethylene–octene copolymer blends. Polym Test. 2009;28:215222. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30. Razavi-Nouri, M, Ghorbanzadeh-Ahangari, M, Fereidoon, A, et al. Effect of carbon nanotubes content on crystallization kinetics and morphology of polypropylene. Polym Test. 2009;28:4652. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31. Karger-Kocsis, J. Polypropylene structure, blends and composites. London: Chapman and Hall; 1995 .

  • 32. Arbelaiz, A, Fernandez, B, Ramos, JA, et al. Thermal and crystallization studies of short flax fibre reinforced polypropylene matrix composites: effect of treatments. Thermochim Acta. 2006;440:111121. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33. Zafeiropoulos, NE, Baillie, CA, Matthews, FL. A study of transcrystallinity and its effect on the interface in flax fibre reinforced composite materials. Compos Part A Appl Sci Manuf. 2001;32:525543. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34. Girone`s, J, Pimenta, MTB, Vilaseca, F, et al. Blocked diisocyanates as reactive coupling agents: application to pine fiber–polypropylene composites. Carbohydr Polym. 2008;74:106113. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35. Pracella, M, Chionna, D, Anguillesi, I, Kulinski, Z, Piorkowska, E. Functionalization, compatibilization and properties of polypropylene composites with hemp fibres. Compos Sci Technol. 2006;66:22182230. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36. Acha, BA, Reboredo, MM, Marcovich, NE. Effect of coupling agents on the thermal and mechanical properties of polypropylene–jute fabric composites. Polym Int. 2006;55: 9 11041113. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37. Devaux, E, Gérard, JF, Bourgin, P, Chabert, B. Two-dimensional simulation of crystalline growth fronts in a polypropylene/glass–fibre composite depending on processing conditions. Compos Sci Technol. 1993;48:199203. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38. Brandrup, J, Immergut, EH. Polymer handbook. 2 New York: Wiley-Interscience; 1975 241265.

  • 39. Monasse, B, Haudin, JM. Growth transition and morphology change in polypropylene. Colloid Polym Sci. 1985;263:822831. .

  • 40. Ke, Y, Long, CF, Qi, ZN. Crystallization, properties, and crystal and nanoscale morphology of PET–clay nanocomposites. J Appl Polym Sci. 1999;71:11391146. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41. Supaphol, P, Thanomkiat, P, Junkasem, J, Dangtungee, R. Non-isothermal melt-crystallization and mechanical properties of titanium(IV) oxide nanoparticle-filled isotactic polypropylene. Polym Test. 2007;26:2037. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42. Huang, YP, Chen, GM, Yao, Z, Li, HW, Wu, Y. Non-isothermal crystallization behavior of polypropylene with nucleating agents and nano-calcium carbonate. Eur Polym J. 2005;41:27532760. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
1
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2024 19 0 0
Jul 2024 10 0 0
Aug 2024 36 0 0
Sep 2024 34 0 0
Oct 2024 191 0 0
Nov 2024 47 0 0
Dec 2024 2 0 0