View More View Less
  • 1 Department of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
Restricted access

Abstract

The thermal oxidative degradation kinetics of pure acrylonitrile–butadiene–styrene (ABS) and the flame-retarded ABS materials with intumescent flame retardant (IFR) were investigated using Kissinger, Flynn–Wall–Ozawa, and Horowitz–Metzger methods. The results showed that the degradation of all samples included two stages, the activation energy at the first stage decreased by the incorporation of these flame retardant components, while increased at the second stage. The activation energy order of the flame-retarded ABS samples at stage 2 illustrates the relationship between the composition of IFRs and their flame retardancy, FR materials with appropriate acid agent/char former ratio has higher activation energy and better flame retardancy.

  • 1. Horacek, H, Pieh, S. The importance of intumescent systems for fire protection of plastic materials. Polym Int. 2000;49:11061114. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2. Gao, M, Wu, W, Yan, Y. Thermal degradation and flame retardancy of epoxy resins containing intumescent flame retardant. J Therm Anal Calorim. 2009;95:605608. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3. Demir, H, Arkıs, E, Balköse, D, Ülkü, S. Synergistic effect of natural zeolites on flame retardant additives. Polym Degrad Stab. 2005;89:478483. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4. Anna, P, Marosi, Gy, Bourbigot, S, Le Bras, M, Delobel, R. Intumescent flame retardant systems of modified rheology. Polym Degrad Stab. 2002;77:243247. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5. Chiu, S-H, Wang, W-K. The dynamic flammability and toxicity of magnesium hydroxide filled intumescent fire retardant polypropylene. J Appl Polym Sci. 1998;67:989995. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6. Li, B, Xu, MJ. Effect of a novel charring-foaming agent on flame retardancy and thermal degradation of intumescent flame retardant polypropylene. Polym Degrad Stab. 2006;91:13801386. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7. CH, Ke, Li, J, Fang, KY, Zhun, QL, Yan, Q, Wang, YZ. Synergistic effect between a novel hyperbranched charring agent and ammonium polyphosphate on the flame retardant and anti-dripping properties of polylactide. Polym Degrad Stab. 2010;95:763770. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8. Dai, JF, Li, B. Synthesis, thermal degradation, and flame retardance of novel triazine ring-containing macromolecules for intumescent flame retardant polypropylene. J Appl Polym Sci. 2010;116:21572165.

    • Search Google Scholar
    • Export Citation
  • 9. Liu, Y, Feng, ZQ, Wang, Q. The investigation of intumescent flame-retardant polypropylene using a new macromolecular charring agent polyamide 11. Polym Compos. 2010;30:221225. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10. Almeras, X, Dabrowski, F, Bras, ML, Delobel, R, Bourbigot, S, Marosi, G, Anna, P. Using polyamide 6 as charring agent in intumescent polypropylene formulations. II. Thermal degradation. Polym Degrad Stab. 2002;77:315323. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11. CX, Lu, Chen, T, Cai, XF. Halogen-free intumescent flame retardant for ABS/PA6/SMA alloys. J Macromol Sci Phys. 2009;48:651662. .

  • 12. Lv, P, Wang, ZZ, Hu, KL, Fan, WC. Flammability and thermal degradation of flame retarded polypropylene composites containing melamine phosphate and pentaerythritol derivatives. Polym Degrad Stab. 2005;90:523534. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13. Balabanovich, AI. Thermal degradation study of intumescent additives: Pentaerythritol phosphate and its blend with melamine phosphate. Thermochim Acta. 2005;435:188196. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14. Halpern, Y, Mott, DM, Niswarder, RH. Fire retardancy of thermoplastic materials by intumescence. Ind Eng Chem Prod Res Dev. 1984;23:233238. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15. Chen, YH, Liu, Y, Wang, Q, Yin, H, Aelmans, N, Kierkels, R. Performance of intumescent flame retardant master batch synthesized through twin-screw reactively extruding technology: effect of component ratio. Polym Degrad Stab. 2003;81:215224. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16. Chen, Y, Wang, Q. Thermal oxidative degradation kinetics of flame-retarded polypropylene with intumescent flame-retardant master batches in situ prepared in twin-screw extruder. Polym Degrad Stab. 2007;92:280291. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17. Yang, KK, Wang, XL, Wang, YZ, Wu, B, Yin, YD, Yang, B. Kinetics of thermal degradation and thermal oxidative degradation of poly(p-dioxanone). Eur Polym J. 2003;39:15671574. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18. Jin, WP, Sea, CO, Hac, PL, Hee, TK, Kyong, OY. A kinetic analysis of thermal degradation of polymers using a dynamic method. Polym Degrad Stab. 2000;67:535540. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19. Li, LQ, Guan, CX, Zhang, AQ, Chen, DH, Qing, ZB. Thermal stabilities and thermal degradation kinetics of polyimides. Polym Degrad Stab. 2004;84:369373. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20. Sun, JT, Huang, YD, Gong, GF, Cao, HL. Thermal degradation kinetics of poly(methylphenylsiloxane) containing methacryloyl groups. Polym Degrad Stab. 2006;91:339346. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21. Jun, W, Liu, Y, Cai, X. Effect of a novel charring agent on thermal degradation and flame retardancy of acrylonitrile–butadiene–styrene. J Therm Anal Calorim. 2011;103:767772. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22. Kissinger, HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:17021706. .

  • 23. Flynn, JH, Wall, LA. General treatment of the thermogravimetry of polymers. J Res Natl Bur Stand A Phys Chem. 1966;70A:487489.

  • 24. Ozawa, T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:18811886. .

  • 25. Horowitz, HH, Metzger, G. A new analysis of thermogravimetric data. Anal Chem. 1963;35:14641467. .

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2021 0 0 0
Jul 2021 2 0 0
Aug 2021 0 0 0
Sep 2021 2 0 0
Oct 2021 0 0 0
Nov 2021 0 0 0
Dec 2021 1 0 0