View More View Less
  • 1 Department of Chemical Engineering, National Cheng Kung University, Tainan 701-01, Taiwan
Restricted access

Abstract

Thermal behavior, miscibility, and crystalline morphology in blends of low-molecular-weight poly(l-lactic acid) (LMw-PLLA) or high-molecular-weight PLLA (HMw-PLLA) with various polyesters such as poly(butylene adipate) (PBA), poly(ethylene adipate) (PEA), poly(trimethylene adipate) (PTA), or poly(ethylene succinate) (PESu), respectively, were explored using differential scanning calorimeter (DSC), and polarized-light optical microscopy (POM). Phase behavior in blends of PLLA with other polyesters has been intriguing and not straight forward. Using a low- and high molecular weight PLLA, this study aimed at mainly using thermal analyses for probing the phase behavior, phase diagrams, and temperature dependence of blends systems composed of PLLA of two different molecular weights (low and high) with a series of aliphatic polyesters of different structures varying in the (CH2/CO) ratio in main chains. The blends of LMw-PLLA/PEA and LMw-PLLA/PTA show miscibility in melt and amorphous glassy states. Meanwhile, the LMw-PLLA/PESu blend is immiscible with an asymmetry-shaped upper critical solution temperature (UCST) at 220–240 °C depending on the blend composition. In contrast to miscibility in LMw-PLLA/PTA and LMw-PLLA/PEA blends, HMw-PLLA with polyesters are mostly immiscible; and HMw-PLLA/PTA blend is the only one showing an asymmetry-shaped UCST phase diagram with clarity points at 195–235 °C (depending on composition). Reversibility of UCST behavior, with no chemical transreactions, in these blends was proven by solvent recasting, gel permeation chromatography, and Fourier transform infrared spectroscopy (FT-IR). Crystalline morphology behavior of the LMw-PLLA/PEA and LMw-PLLA/PTA blends furnishes addition evidence for miscibility in the amorphous phase between LMw-PLLA and PTA or PEA.

  • 1. Saeki, S, Cowie, JMG, McEwen, IJ. The effect of molecular weight and casting solvent on the miscibility of polystyrene-poly(α-methyl styrene) blends. Polymer. 1983;24:6064. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2. Cowie, JMG, McEwen, IJ. Predicted miscibility of polystyrene and poly(α-methyl styrene) and comparison with experiment. Polymer. 1985;26:16621666. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3. Widmaier, JM, Mignard, G. Polystyrene-poly(α-methylstyrene) blends: Influence of molecular weight on miscibility. Eur Polym J. 1987;23:989992. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4. Lin, JL, Roe, RJ. Relationship among polymer–polymer interaction energy densities and the deuterium isotope effect. Macromolecules. 1987;20:21682173. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5. Schneider, HA, Dilger, P. 1989 DSC and TMS study of polystyrene/poly(α-methylstyrene) blends. Polym Bull. 21:265272. .

  • 6. Rameau, A, Gallot, Y, Marie, P, Farnoux, B. Deuterated polystyrene-poly(α-methylstyrene) blends: range of miscibility and determination of the interaction parameter by small angle neutron scattering. Polymer. 1989;30:386392. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7. Callaghan, TA, Paul, DR. Interaction energies for blends of poly(methyl methacrylate), polystyrene, and poly(α-methylstyrene) by the critical molecular weight method. Macromolecules. 1993;26:24392450. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8. Li, SH, Woo, EM. Effects of chain configuration on UCST behavior in blends of poly(l-lactic acid) with tactic poly(methyl methacrylate)s. J Polym Sci Part B. 2008;46:23552369. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9. Yamane, H, Sasai, K. Effect of the addition of poly(D-lactic acid) on the thermal property of poly(l-lactic acid). Polymer. 2003;44:25692575. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10. Tsuji, H, Fukui, I. Enhanced thermal stability of poly(lactide)s in the melt by enantiomeric polymer blending. Polymer. 2003;44:28912896. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11. Urayama, H, Kanamori, T, Fukushima, K, Kimura, Y. Controlled crystal nucleation in the melt-crystallization of poly(l-lactide) and poly(l-lactide)/poly(d-lactide) stereocomplex. Polymer. 2003;44:56355641. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12. Blümm, E, Owen, AJ. Miscibility, crystallization and melting of poly(3-hydroxybutyrate)/poly(l-lactide) blends. Polymer. 1995;36:40774081. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13. Focarete, ML, Scandola, M, Dobrzynski, P, Kowalczuk, M. Miscibility and mechanical properties of blends of l-lactide copolymers with atactic poly(3-hydroxybutyrate). Macromolecules. 2002;35:84728477. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14. Malinová, L, Brožek, J. Mixtures poly((R)-3-hydroxybutyrate) and poly(l-lactic acid) subjected to DSC. J Therm Anal Calorim. 2011;103:653660. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15. Shirahase, T, Komatsu, Y, Tominaga, Y, Asai, S, Sumita, M. Miscibility and hydrolytic degradation in alkaline solution of poly(l-lactide) and poly(methyl methacrylate) blends. Polymer. 2006;47:48394844. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16. Meaurio, E, Zuza, E, Sarasua, JR. Miscibility and specific interactions in blends of poly(l-lactide) with poly(vinylphenol). Macromolecules. 2005;38:12071215. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17. Gajria, AM, Davé, TT, Gross, RA, McCarthy, SP, Stephen, P. Miscibility and biodegradability of blends of poly(lactic acid) and poly(vinyl acetate). Polymer. 1996;37:437444. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18. Nijenhuis, AJ, Colstee, E, Grijpma, DW, Pennings, AJ. High molecular weight poly(l-lactide) and poly(ethylene oxide) blends: thermal characterization and physical properties. Polymer. 1996;37:58495857. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19. Lu, JM, Qiu, ZB, Yang, WT. Fully biodegradable blends of poly(l-lactide) and poly(ethylene succinate): miscibility, crystallization, and mechanical properties. Polymer. 2007;48:41964204. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20. Woo, EM, Hsieh, YT, Chen, WT, Kuo, NT, Wang, LY. Immiscibility-miscibility phase transformation in blends of poly(ethylene succinate) with poly(l-lactic acid)s of different molecular weights. J Polym Sci Part B. 2010;48:11351147. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21. Kumagai, Y, Doi, Y. Enzymatic degradation of binary blends of microbial poly(3-hydroxybutyrate) with enzymatically active polymers. Polym Degrad Stab. 1992;37:253256. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22. Domb, AJ. Degradable polymer blends I. Screening of miscible polymers. J Polym Sci Part A. 1993;31:19731981. .

  • 23. Koyama, N, Doi, Y. Morphology and biodegradability of a binary blend of poly((R)-3-hydroxybutyric acid) and poly((R,S)-lactic acid). Can J Microbiol. 1995;41:316322. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24. Hsieh, YT, Woo, EM. Phase diagrams in blends of poly(3-hydroxybutyric acid) with various aliphatic polyesters. Express Polym Lett. 2011;5:570580. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25. Kovacs, AJ. Transition vitreuse dans les polymères amorphes. Etude phénoménologique. Adv Polym Sci. 1963;3:394507. .

  • 26. Simha, R, Boyer, RF. On a general relation involving the glass temperature and coefficients of expansion of polymers. J Chem Phys. 1962;37:10031007. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27. Hlaváček, B, Černošková, E, Prokůpek, L, Večeřa, M. 1996 The transition points in the liquid state and their molecular modeling. Thermochim Acta. 280–281:417447. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28. Fox, TG. Influence of diluent and of copolymer composition on the glass temperature of a polymer system. Bull Am Phys Soc. 1956;1:123135.

    • Search Google Scholar
    • Export Citation
  • 29. Gordon, M, Taylor, JS. Ideal copolymers and the second-order transitions of synthetic rubbers. I. Non-crystalline copolymers. J Appl Chem. 1952;2:493500. .

    • Crossref
    • Search Google Scholar
    • Export Citation

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)