Author: M. Raimo 1
View More View Less
  • 1 Consiglio Nazionale delle Ricerche, Istituto di Chimica e Tecnologia dei Polimeri, Via Campi Flegrei 34, 80078, Pozzuoli, NA, Italy
Restricted access

Abstract

In this article procedures to measure specifically thermal conductivity of polymers by means of traditional differential scanning calorimetry (DSC) are discussed and an improved procedure minimizing the effect of contact resistances variability has been conceived. A pure substance, namely indium, for which the fusion temperature is known, is added to the polymer sample and used as internal reference in a unique DSC pan. Conductivity is then obtained by measuring the rate of the heat flow through the solid polymer sample during the solid–liquid transition of indium. The present procedure gives uncertainties lower than those expected for thermal conductivity estimations by previous DSC methods, does not require thermal conductivity reference materials nor specimens of various thickness and may be performed routinely with an automatic sample changing device.

  • 1. Fedorchenko, AI, Chernov, AA. Simulation of the microstructure of a thin metal layer quenched from a liquid state. Intern J Heat Mass Transf. 2003;46:921929. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2. Raimo, M, Cascone, E, Martuscelli, E. Melt crystallisation of polymer materials: the role of the thermal conductivity and its influence on the microstructure. J Mater Sci. 2001;36:35913598. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3. Raimo, M. “Kinematic” analysis of growth and coalescence of spherulites for predictions on spherulitic morphology and on the crystallization mechanism. Prog Polym Sci. 2007;32:597622. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4. Hargis, MJ, Grady, BP. Effect of sample size on isothermal crystallization measurements performed in a differential scanning calorimeter: a method to determine avrami parameters without sample thickness effects. Thermochim Acta. 2006;443:147158. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5. Gubler, U, Raunhardt, M, Stump, A. Measurement technique for thermal conductivity of thin polymer films. Thin Solid Films. 2006;515:17371740. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6. Lin, C, Li, Z, Guo, ZY. Experimental Investigation of plastic finned-tube heat exchangers, with emphasis on material thermal conductivity. Exp Therm Fluid Sci. 2009;33:922928. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7. Chiu, J, Fair, PG. Determination of thermal conductivity by differential scanning calorimetry. Thermochim Acta. 1979;34:267273. .

  • 8. Blaine, RL, Marcus, SM. Determination of temperature-modulated DSC thermal conductivity equations. J Therm Anal. 1998;54:467476. .

  • 9. Carslaw, HS, Jaeger, JC. Conduction of heat in solids. 2 Oxford: Claredon Press; 1997.

  • 10. Wang, AL, Zhao, JF. Review of prediction for thermal contact resistance. Sci China Technol Sci. 2010;53:17981808. .

  • 11. Choy, CL. Thermal conductivity of polymers. Polymer. 1977;18:9841004. .

  • 12. Al-Nassar, YN. Prediction of thermal conductivity of air voided-fiber-reinforced composite laminates part II: 3D simulation. Heat Mass Transf. 2006;43:117122. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13. Rides, M, Morikawa, J, Halldahl, L, Hay, B, Lobo, H, Dawson, A, Allen, C. Intercomparison of thermal conductivity and thermal diffusivity methods for plastics. Polym Test. 2009;28:480489. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14. Hu, M, Yu, D, Wei, J. Thermal conductivity determination of small polymer samples by differential scanning calorimetry. Polym Test. 2007;26:333337. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15. Gaal, PS, Thermitus, M-A, Stroe, DE. Thermal conductivity measurements using the flash method. J Therm Anal Calorim. 2004;78:185189. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16. Brennan, WP, Miller, B, Whitewell, JC. Thermal conductivity measurements with the differential scanning calorimeter. J Appl Polym Sci. 1968;21:18001802. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17. Khanna, YP, Taylor, TJ, Chomyn, G. A new differential scanning calorimetry based approach for the estimation of thermal conductivity of polymer solids and melts. Polym Eng Sci. 1988;28:10341041. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18. Flynn, JH, Levin, DM. A method for the determination of thermal conductivity of sheet materials by differential scanning calorimetry. Thermochim Acta. 1988;126:93100. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19. Hakvoort, G, van Reijen, LL. Measurement of the thermal conductivity of solid substances by DSC. Thermochim Acta. 1985;93:317320. .

  • 20. Camirand, CP. Measurement of thermal conductivity by differential scanning calorimetry. Thermochim Acta. 2004;417:14. .

  • 21. Merzlyakov, M, Schick, C. Thermal conductivity from dynamic response of DSC. Thermochim Acta. 2001;377:183191. .

  • 22. Venkata, R, Nagarajan, K. Evolution of heat capacity measurements by temperature-modulated differential scanning calorimetry. J Thermal Anal Calorim. 2010;102:11351140. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23. Hall, JA, Ceckler, WH, Thompson, EV. Thermal properties of rigid polymers. I. Measurement of thermal conductivity and question concerning contact resistance. J Appl Polym Sci. 1987;33:20292039. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24. O’Neill, MJ. The analysis of a temperature-controlled scanning calorimeter. Anal Chem. 1964;36:12381245. .

  • 25. Govindaraju, N, Aleksov, A, Li, X, Okuzumi, F, Wolter, SD, Collazo, R, Prater, JT, Sitar, Z. Comparative study of textured diamond films by thermal conductivity measurements. Appl Phys A. 2006;85:331335. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26. Price, DM, Jarratt, M. Thermal conductivity of PTFE and PTFE composites. Thermochim Acta. 2002;392–393:231236. .

  • 27. Raimo, M. Analysis of layer by layer phase transformation of a polyoxymethylene copolymer film. Acta Mater. 2008;56:42174225. .

  • 28. Binsbergen, FL, De Lange, BGM. Heterogeneous nucleation in the crystallization of polyolefins: Part 2 Kinetic of crystallization of nucleated polypropylene. Polymer. 1970;11:309332. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29. Vahanyan, AI. A method for the thermal conductivity measurement of semiconductors. Measurements. 2006;39:447450.

  • 30. Chan, TW, Isayev, AI. Quiescent polymer crystallization: modeling and measurements. Polym Eng Sci. 1994;34:461471. .

  • 31. Folkes, MJ, Hardwick, ST. Direct study of the structure and properties of transcrystalline layers. J Mat Sci Lett. 1987;6:656658. .

  • 32. Pusatcioglu, SY, Frike, AL, Hassler, JC. Variation of thermal conductivity and specific heat during cure of thermoset polyesters. J Appl Polym Sci. 1979;24:947952. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33. Gracia-Fernandez, CA, Davies, P, Gomez-Barreiro, S, Lopez Beceiro, J, Tarrio-Saavedra, J, Artiaga, R. A vitrification and curing study by simultaneous TMDSC-photocalorimetry. J Therm Anal Calorim. 2010;102:10571062. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34. Ferrante, M, Petrini, M, Trentini, P, Ciavarelli, L, Spoto, G. Thermal analysis of light-curing composites. J Therm Anal Calorim. 2010;102:107111. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35. Sanchez-Cabezudo, M, Masegosa, RM, Salom, C, Prolongo, MG. Correlations between the morphology and the thermo-mechanical properties in poly(vinyl acetate)/epoxy thermosets. J Therm Anal Calorim. 2010;102:10251033. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36. Kalantar, AH, Gelb, RI, Alpaer, JS. Biases in summary statistics of slopes and intercepts in linear regression with errors in both variables. Talanta. 1995;42:597603. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37. Wiener, O. Die Theorie des Mischkorpers fur das Feld des stationaren Stromung. Abh Math, Physischen Klasse Konigl Sacsh Gesel Wissen. 1912;32:509604.

    • Search Google Scholar
    • Export Citation
  • 38. Lee SM . International encyclopedia of composites, vol 5, New York: VCH Publishers Inc; 1990, p 485.

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)