Hybrid melting gels were prepared by a sol–gel process, starting with a mono-substituted siloxane and a di-substituted siloxane, methyltrimethoxysilane (MTES) together with dimethyldimethoxysilane (DMDES). Five gel compositions were prepared with concentrations between 50% MTES–50% DMDES and 75% MTES–25% DMDES (in mol.%). The consolidation temperature, the treatment temperature after which the melting gel no longer softens, increased from 135 to 160 °C with a decrease in the amount of the mono-substituted siloxane. The glass transition temperature, recorded with differential scanning calorimetry, decreased from −0.3 to −56.7 °C with a decrease in the amount of the mono-substituted siloxane. When a sample was heat treated isothermally for 2 h at the consolidation temperature, the glass transition temperature increased by about 15°, indicating further crosslinking of the siloxane network.
1. Ungureanu, S, Laurent, G, Deleuze, H, Babot, O, Achard, MF, Popa, MI, Sanchez, C, Backov, R. Synthesis and characterization of new organically grafted silica foams. Colloids Surf A. 2010;360:85–93. .
2. Sanchez, C, Julian, B, Belleville, P, Popall, M. Application of hybrid organic-inorganic nanocomposites. J Mater Chem. 2005;15:3559–3592. .
3. Schmidt, H. Organic modification of glass structure new glasses or new polymers?. J Non-Cryst Solids. 1989;112:419–423. .
4. Matsuda, A, Sasaki, T, Hasegawa, K, Tatsumisago, M, Minami, T. Thermal softening behavior and application to transparent thick films of poly(benzylsilsesquioxane) particles prepared by sol-gel process. J Am Ceram Soc. 2001;84:775–780. .
5. Masai, H, Tokuda, Y, Yoko, T. Gel-melting method for preparation of organically modified siloxane low-melting glasses. J Mater Res. 2005;20:1234–1241. .
6. Kakiuchida, H, Takahashi, M, Tokuda, Y, Masai, H, Kuniyoshi, M, Yoko, T. Viscoelastic and structural properties of the phenyl-modified polysiloxane system with a three-dimensional structure. J Phys Chem B. 2006;110:7321–7327. .
7. Kakiuchida, H, Takahashi, M, Tokuda, Y, Masai, H, Kuniyoshi, M, Yoko, T. Effects of organic groups on structure and viscoelastic properties of organic-inorganic polysiloxane. J Phys Chem B. 2007;111:982–988. .
8. De Witte, BM, Commers, D, Uytterhoeven, JB. Distribution of organic groups in the silica gels prepared from organoalkoxisilanes. J Non-Cryst Solids. 1996;202:35–41. .
9. Park, Y-W, Lee, D-S, Kim, S-H. Mechanical, surface and thermal properties of polyimide-polydimethylsiloxane nanocomposites fabricated by sol-gel process. J Appl Polymer Sci. 2004;91:1774–1783. .
10. Yu, S, Wong, TKS, Pita, K. Synthesis of organically modified mesoporous silica as a low dielectric constant intermetal dielectric. J Vac Sci Technol B. 2002;20:2036–2042. .
11. Yu, S, Wong, TKS, Hu, X, Goh, TK. Effect of processing temperature on the properties of sol-gel-derived mesoporous silica films. Thin Solid Films. 2004;462–463:306–310. .
12. Yu, S, Wong, TKS, Hu, X, Pita, K. The effect of TEOS/MTES ratio on the structural and dielectric properties of porous silica films. J Electrochem Soc. 2003;150:F116–F121. .
13. Rao, AV, Kulkarni, M, Amalnerkar, DP, Seth, T. Superhydrophobic silica aerogels based on methyltrimethoxysilane. J Non-Cryst Solids. 2003;330:187–195. .
14. Nadargi, DY, Rao, AV. Methyltriethoxysilane: New precursor for synthesizing silica aerogels. J Alloys Compd. 2009;467:397–404. .
15. Latournerie, J, Dempsey, Ph, Hourlier-Bahlol, D, Bonet, J-P. Silicon oxycarbide glasses: Part 1. Thermochemical stability. J Am Ceram Soc. 2006;89:1485–1491. .
16. Parashar, VK, Raman, V, Bahl, OP. Nitridation of sol-gel derived DMDES-TEOS copolymer gels to silicon carboxynitride. J Mater Sci Lett. 1997;16:1260–1263. .
17. Camino, G, Lomakin, SM, Lazzari, M. Polydimethylsiloxane thermal degradation. Part 1. Kinetic aspects. Polymer. 2001;42:2395–2402. .
18. Camino, G, Lomakin, SM, Legeard, M. Polydimethylsiloxane thermal degradation. Part 2. The degradation mechanism. Polymer. 2002;43:2011–2015. .
19. Yang, J, Chen, J, Song, J. Studies of the surface wettability and hydrothermal stability of methyl-modified silica films by FT-IR and Raman spectra. Vib Spec. 2009;50:178–184. .
20. West, GD, Diamond, GG, Dajda, N, Smith, ME, Lewis, MH. Structural characterization of organosiloxane membranes, Br. Cer. Ceram Trans. 2003;102:93–98. .
21. Standeker, S, Novak, Z, Knez, Z. Removal of BTEX vapors from waste gas streams using silica aerogels of different hydrophobicity, J. Hazard Mater. 2009;165:1114–1118. .
22. Zhou, W, Yang, H, Guo, X, Lu, J. Thermal degradation behaviors of some branched and linear polysiloxanes. Polym Degrad Stab. 2006;91:1471–1475. .
23. Hohne, GWH, Hemminger, WF, Flammersheim, H-J. Differential scanning calorimetry. Berlin: Springer; 2003.
24. Sankaraiah, S, Lee, JM, Kim, JH, Choi, SW. Preparation and characterization of surface-functionalized polysilsesquioxane hard spheres in aqueous medium. Macromolecules. 2008;41:6195–6204. .
25. Yang, C-C, Wu, P-Z, Chen, W-C, Chen, H-L. Low dielectric constant nanoporous poly(methyl silsesquioxane) using poly(styrene-block-2-vinylpyridine as template. Polymer. 2004;45:702–5961.
26. Ma, S, Liu, W, Su, Q, Liu, Y. Studies on thermal properties of epoxy resins modified with two kinds of silanes. J Macromol Sci B. 2010;49:43–56. .
27. Jitianu A , Doyle J, Amatucci G, Klein LC. Methyl-modified melting gels for hermetic barrier coatings. In: Proceedings MS&T 2008 enabling surface coating systems: multifunctional coatings, Pittsburgh, PA, 2008, pp. 2171–2182.
28. Jitianu, A, Amatucci, G, Klein, LC. Phenyl-substituted siloxane hybrid gels that soften below 140°C. J Am Ceram Soc. 2008;92:36–40. .
29. Jitianu, A, Doyle, J, Amatucci, G, Klein, LC. Methyl modified siloxane melting gels for hydrophobic films. J Sol-Gel Sci Technol. 2010;53:272–279. .
30. Klein, LC, Jitianu, A. Organic-inorganic hybrid melting gels. J Sol-Gel Sci Technol. 2010;55:86–93. .