View More View Less
  • 1 Laboratoire de Physique et Chimie des Materiaux, Universite de M'sila, 28000, M'sila, Algeria
  • | 2 Department of Mechanical Engineering, King Fahd University of Petroleum & Minerals, Dhahran 31261, Kingdom of Saudi Arabia
  • | 3 Department of Physics, Ferhat Abbas University, Jijel 18000, Algeria
Restricted access

Abstract

Thermal analysis techniques remain important tools amongst the large variety of methods used for analysis of the dehydroxylation of kaolinite. In the present study, the kinetics of dehydroxylation of Algerian kaolinite, wet ball milled for 5 h followed by attrition milling for 1 h, was investigated using differential thermal analysis (DTA) and thermogravimetry (TG). Experiments were carried out between room temperature and 1350 °C at heating rates of 5, 10 and 20 °C min−1. The temperature of dehydroxylation was found to be around 509 °C. The activation energy and frequency parameter evaluated through isothermal DTA treatment were 174.69 kJ mol−1 and 2.68 × 109 s−1, respectively. The activation energies evaluated through non-isothermal DTA and TG treatments were 177.32 and 177.75 kJ mol−1, respectively. Growth morphology parameters n and m were found to be almost equal to 1.5.

  • 1. Sahnoune, F, Chegaar, M, Saheb, N, Goeuriot, P, Valdivieso, F. Algerian kaolinite used for mullite formation. Appl Clay Sci. 2008;38:304310. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2. Chen, YF, Wang, MC, Hon, NH. Phase transformation and growth of mullite in kaolin ceramics. J Eur Ceram Soc. 2004;24:23892397. .

  • 3. Cheng, H, Yang, J, Frost, RL, Liu, Q, Zhang, Z. Thermal analysis and infrared emission spectroscopic study of kaolinite-potassium acetate intercalate complex. J Therm Anal Calorim. 2011;103:507513. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4. Franco, F, Pérez-Maqueda, LA, Pérez-Rodriguez, JL. Influence of the particle-size reduction by ultrasound treatment on the dehydroxylation process of kaolinites. J Therm Anal Calorim. 2004;78:10431055.

    • Search Google Scholar
    • Export Citation
  • 5. Souza, GP, Sanchez, R, Holanda, JNF. Thermal and structural characterization of Brazilian South-Eastern kaolinitic clays. J Therm Anal Calorim. 2003;73:293305. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6. Kristóf, J, Frost, RL, Kloprogge, JT, Horváth, E, Makó, É. Detection of four different OH-groups in ground kaolinite with controlled-rate thermal analysis. J Therm Anal Calorim. 2002;69:7783. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7. Ptácek, P, Kubátová, D, Havlica, J, Brandštetr, J, Soukala, F, Opravil, T. Isothermal kinetic analysis of the thermal decomposition of kaolinite: the thermogravimetric study. Thermochim Acta. 2010;501:2429. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8. Ptáček, P, Kubátová, D, Havlica, J, Brandštetr, J, Šoukal, F, Opravil, T. The non-isothermal kinetic analysis of the thermal decomposition of kaolinite by thermogravimetric analysis. Powder Technol. 2010;204:222227. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9. Ptáček, P, Šoukal, F, Opravil, T, Havlica, J, Brandštetr, J. The kinetic analysis of the thermal decomposition of kaolinite by DTG technique. Powder Technol. 2011;208:2025. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10. Bich, Ch, Ambroise, J, Péra, J. Influence of degree of dehydroxylation on the pozzolanic activity of metakaolin. Appl Clay Sci. 2009;44:194200. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11. Temuujin, J, Okada, K, MacKenzie, KJD, Jadambaa, TS. The effect of water vapour atmospheres on the thermal transformation of kaolinite investigated by XRD, FTIR and solid state MAS NMR. J Eur Ceram Soc. 1999;19:106112. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12. de Souza Santos, H, Campos, TW, de Souza Santos, P, Kiyohara, PK. Thermal phase sequences in gibbsite/kaolinite clay: electron microscopy studies. Ceram Int. 2005;31:10771084. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13. Liu, YF, Liu, XQ, Tao, SW, Meng, GY, Sorensen, OT. Kinetics of the reactive sintering of kaolinite-aluminum hydroxide extrudate. Ceram Int. 2002;28:479486. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14. Heide, K, Földvari, M. High temperature mass spectrometric gas-release studies of kaolinite Al2[Si2O5(OH)4] decomposition. Thermochim Acta. 2006;446:106112. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15. Prodanoć, D, Živković, ŽD, Dumić, M. The kinetics of dehydroxylation and mullitization of zettlitz kaolin in the presence of calcium(II) as an ingredient. Thermochim Acta. 1989;156:6167. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16. Castelein, O, Soulestin, B, Bonnet, JP, Blanchart, P. The influence of heating rate on the thermal behaviour and mullite formation from a kaolin raw material. Ceram Int. 2001;27:517522. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17. Sahnoune, F, Chegaar, M, Saheb, N, Goeuriot, P, Valdivieso, F. Differential thermal analysis of mullite formation from Algerian kaolin. Adv Appl Ceram. 2008;107:913. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18. Romero, M, Martin-Marquez, J, Rincon, JM. Kinetic of mullite formation from a porcelain stoneware body for tiles production. J Eur Ceram Soc. 2006;26:16471652. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19. Matusita, K, Miura, K, Komatsu, K. Kinetics of non-isothermal crystallization of some fluorozirconate glasses. Thermochim Acta. 1985;88:283288. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20. Ligero, RA, Vazques, J, Casas-Ruiz, M, Jimenez-Garay, R. A study of the crystallization kinetics of some Cu–As–Te glasses. J Mater Sci. 1991;26:211215. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21. Kissinger, HE. Variation of peak temperature with heating rate in differential thermal analysis. J Res Natl Bur Stand. 1956;57:217221.

    • Search Google Scholar
    • Export Citation
  • 22. Matusita, K, Sakka, S, Matsui, Y. Determination of the activation energy for crystal growth by differential thermal analysis. J Mater Sci. 1975;10:961966. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23. Matusita, K, Sakka, S. Kinetic study of the crystallisation of glass by differential scanning calorimetry. Phys Chem Glasses. 1979;20:8184.

    • Search Google Scholar
    • Export Citation
  • 24. Matusita, K, Sakka, S. Kinetic study of crystallization of glass by differential thermal analysis—criterion on application of Kissinger plot. J Non-Cryst Solids. 1980;38–39:741746. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25. Levy, JH, Hurst, HJ. Kinetics of dehydroxylation, in nitrogen and water vapour, of kaolinite and smectite from Australian Tertiary oil shales. Fuel. 1993;72:873877. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26. Nahdi, K, Llewellyn, P, Rouquérol, F, Rouquérol, J, Ariguib, NK, Ayedi, MT. Controlled rate thermal analysis of kaolinite dehydroxylation: effect of water vapour pressure on the mechanism. Thermochim Acta. 2002;390:123132. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27. Traoré, K, Gridi-Bennadji, F, Blanchart, P. Significance of kinetic theories on the recrystallization of kaolinite. Thermochim Acta. 2006;451:99104. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28. Saikia, N, Sengupta, P, Gogoi, PK, Borthakur, PC. Kinetics of dehydroxylation of kaolin in presence of oil field effluent treatment plant sludge. Appl Clay Sci. 2002;22:93102. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29. Ptáček, P, Šoukal, F, Opravil, T, Nosková, M, Havlica, J, Brandštetr, J. The non-isothermal kinetics analysis of the thermal decomposition of kaolinite by effluent gas analysis technique. Powder Technol. 2010;203:272276. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30. Zhu, B, Fang, B, Li, X. Dehydration reaction and kinetic parameters of gibbsite. Ceram Int. 2010;36:24932498. .

  • 31. Sestak J . Thermal analysis, part D: thermophysical properties of solids, their measurements and theoretical thermal analysis, 1984.

    • Search Google Scholar
    • Export Citation

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)