Authors:
I. Blanco Department of Industrial and Mechanical Engineering, University of Catania, V.le A. Doria, 6, 95125, Catania, Italy

Search for other papers by I. Blanco in
Current site
Google Scholar
PubMed
Close
,
L. Abate Department of Physical and Chemical Methodologies for Engineering, University of Catania, V.le A. Doria, 6, 95125, Catania, Italy

Search for other papers by L. Abate in
Current site
Google Scholar
PubMed
Close
,
F. A. Bottino Department of Industrial and Mechanical Engineering, University of Catania, V.le A. Doria, 6, 95125, Catania, Italy

Search for other papers by F. A. Bottino in
Current site
Google Scholar
PubMed
Close
,
P. Bottino Department of Pharmaceutical Sciences, University of Catania, V.le A. Doria 6, 95125, Catania, Italy

Search for other papers by P. Bottino in
Current site
Google Scholar
PubMed
Close
, and
M. A. Chiacchio Department of Chemical Sciences, University of Catania, V.le A. Doria, 6, 95125, Catania, Italy

Search for other papers by M. A. Chiacchio in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Seven variously substituted derivatives of polyhedral oligomeric silsesquioxanes (POSSs) with general formula R7R′1 (SiO1.5)8, where R- and R′- were a cyclopentyl and a substituted phenyl group, respectively, were prepared in this study, and their compositions were checked by elemental analysis, 1H NMR and 13C NMR spectroscopy. The compounds obtained were studied by TG and DTA techniques, in both flowing nitrogen and static air atmospheres, to draw useful information about their resistance to thermal degradation. Experiments, performed in the 35–700 °C temperature range, showed different behaviours between the two used atmospheres. The formation of volatile compounds only, with a near-complete mass loss, was observed under nitrogen; by contrast, in oxidative environment, a solid residue (≈50% in every case) was obtained because of the formation of SiO2 as indicated by the FTIR spectra performed. The results obtained for the various compounds investigated were discussed and compared with each other, and heat resistance classifications in the studied environments were made.

  • 1. Zaitsev, VS, Filimonov, DS, Presnyakov, IA, Gambino, RJ, Chu, B. Physical and chemical properties of magnetite and magnetite-polymer nanoparticles and their colloidal dispersions. J Colloid Interf Sci. 1999;212:4957. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2. Haraguchi, K, Farnworth, R, Ohbayashi, A, Takehisa, T. Compositional effects on mechanical properties of nanocomposite hydrogels composed of poly (N,N-dimethylacrylamide) and clay. Macromolecules. 2003;36:57325741. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3. Hu, Y, Chen, JF, Zhang, HT, Li, TW, Xue, X. Using silicon dioxide nanosphere gaps to confine growth of single-crystal nickel sulfide nanowires in polyacrylamide gel. Scripta Mater. 2006;55:131134. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4. Yu, SL, Zuo, XT, Bao, RL, Xu, X, Wang, J, Xu, J. Effect of SiO2 nanoparticle addition on the characteristics of a new organic-inorganic hybrid membrane. Polymer. 2009;50:553559. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5. Chrissafis, K, Paraskevopoulos, KM, Tsiaoussis, I, Bikiaris, D. Comparative study of the effect of different nanoparticles on the mechanical properties, permeability, and thermal degradation mechanism of HDPE. J Appl Polym Sci. 2009;112:16061618. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6. Avella, M, Cosco, S, Di Lorenzo, ML, Di Pace, E, Errico, ME. Influence of CaCO3 nanoparticles shape on thermal and crystallization behavior of isotactic polypropylene based nanocomposites. J Therm Anal Calorim. 2005;80: 1 131136. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7. Ramezanzadeh, B, Attar, MM, Farzam, M. Effect of ZnO nanoparticles on the thermal and mechanical properties of epoxy-based nanocomposite. J Therm Anal Calorim. 2011;103: 2 731739. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8. Viratyaporn, W, Lehman, RL. Effect of nanoparticles on the thermal stability of PMMA nanocomposites prepared by in situ bulk polymerization. J Therm Anal Calorim. 2011;103: 1 267273. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9. Lichtenhan JD , Schwab JJ. Bridging the centuries with SAMPE's materials and processes technology. In: Loud S, editor. 45th international SAMPE symposium and exhibition. Society for the advancement of material and process engineering (SAMPE), Covina, CA. vol. 45, p. 185191, 2000.

    • Search Google Scholar
    • Export Citation
  • 10. Phillips SH , Blanski RL, Svejda SA, Haddad TS, Lee A, Lichtenhan JD, Feher FJ, Mather PT, Hsiao BS. New insight into the structure-property relationships of hybrid (inorganic/organic) POSStm thermoplastics. Mater Res Soc Symp Proc. 2000;628:CC4.6.1–10.

    • Search Google Scholar
    • Export Citation
  • 11. Blanski, RL, Phillips, SH, Chaffee, K, Lichtenhan, JD, Lee, A, Geng, HP. The synthesis of hybrid materials by the blending of polyhedral oligosilsesquioxanes into organic polymers. Polym Prepr. 2000;41:585586.

    • Search Google Scholar
    • Export Citation
  • 12. Fina, A, Monticelli, O, Camino, G. POSS-based hybrids by melt/reactive blending. J Mater Chem. 2010;20:92979305. .

  • 13. Cordes, DB, Lickiss, PD, Rataboul, F. Recent developments in the chemistry of cubic polyhedral oligosilsesquioxanes. Chem Rev. 2010;110:20812173. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14. Voronkov, MG, Vavrent'yev, VI. Polyhedral oligosilsesquioxanes and their homo derivatives. Top Curr Chem. 1982;102:199236.

  • 15. Mather, PT, Jeon, HG, Haddad, TS. Strain recovery in POSS hybrid thermoplastics. Polym Prepr. 2000;41: 1 528529.

  • 16. Haddad, TS, Choe, E, Lichtenhan, JD. Hybrid styryl-based Polyhedral Oligomeric Silsesquioxane (POSS) polymers. Mater Res Soc Symp Proc. 1996;435:2532. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17. Haddad, TS, Stapleton, R, Jeon, HG, Mather, PT, Lichtenhan, JD, Phillips, SH. Nanostructured hybrid organic/inorganic materials: silsesquioxane modified plastics. Polym Prepr. 1999;40: 1 496497.

    • Search Google Scholar
    • Export Citation
  • 18. Lee, A, Lichtenhan, JD. Viscoelastic responses of polyhedral oligosilsesquioxane reinforced epoxy systems. Macromolecules. 1998;31: 15 49704974. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19. dell Erba, IE, Williams, RJJ. Epoxy networks modified by multifunctional polyhedral oligomeric silsesquioxanes (POSS) containing amine groups. J Therm Anal Calorim. 2008;93: 1 95100. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20. Villanueva, M, Martín-Iglesias, JL, Rodríguez-Añón, JA. Proupín-Castiñeiras J. Thermal study of an epoxy system DGEBA (n=0)/mXDA modified with POSS. J Therm Anal Calorim. 2009;96: 2 575582. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21. Wang, XT, Yang, YK, Yang, ZF, Zhou, XP, Liao, YG, Lv, CC, Chang, FC, Xie, XL. Thermal properties and liquid crystallinity of side-chain azobenzene copolymer containing pendant polyhedral oligomeric silsequioxanes. J Therm Anal Calorim. 2010;102: 2 739744. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22. Lichtenhan, JD, Otonari, YA, Carr, MJ. Linear hybrid polymer building blocks: methacrylate-functionalized polyhedral oligomeric silsesquioxane monomers and polymers. Macromolecules. 1995;28: 24 84358437. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23. Haddad, TS, Lichtenhan, JD. Hybrid organic–inorganic thermoplastics: styryl-based polyhedral oligomeric silsesquioxane polymers. Macromolecules. 1996;29: 22 73027304. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24. Mantz, RA, Jones, PF, Chaffee, KP, Lichtenhan, JD, Ismail, MK, Burmeister, M. Thermolysis of Polyhedral Oligomeric Silsesquioxane (POSS) macromers and POSS–Siloxane copolymers. Chem Mater. 1996;8: 6 12501259. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25. Xu, HY, Kuo, SW, Lee, JY, Chang, FC. Glass transition temperatures of poly(hydroxystyrene-co-vinylpyrrolidone-co-isobutylstyryl polyhedral oligosilsesquioxanes). Polymer. 2002;43: 19 51175124. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26. Pellice, SA, Fasce, DP, Williams, RJJ. Properties of epoxy networks derived from the reaction of diglycidyl ether of bisphenol A with polyhedral oligomeric silsesquioxanes bearing OH-functionalized organic substituents. J Polym Sci Part B: Polym Phys. 2003;41: 13 14511461. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27. Philips SH , Gonzalez RI, Chaffee KP, Haddad TS, Hoflund GB, Hsiao BS, Fu BX. Remarkable AO resistance of POSS inorganic/organic polymer. In Loud S, editor. Bridging the centuries with SAMPE's materials and processes technology. 45th International SAMPE Symposium and Exhibition. Society for the Advancement of Material and Process Engineering (SAMPE), Covina, CA. 2000; 45: 192131.

    • Search Google Scholar
    • Export Citation
  • 28. Huang, JC, He, CB, Xiao, Y, Mya, KY, Dai, J, Siow, YP. Polyimide/POSS nanocomposites: interfacial interaction, thermal properties and mechanical properties. Polymer. 2003;44: 16 44914499. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29. Fu, BX, Namani, M, Lee, A. Influence of phenyl-trisilanol polyhedral silsesquioxane on properties of epoxy network glasses. Polymer. 2003;44: 25 77397747. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30. Bharadwaj, RK, Berry, RJ, Farmer, BL. Molecular dynamics simulation study of norbornene—POSS polymers. Polymer. 2000;41: 19 72097221. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31. Tsuchida, A, Bolln, C, Sernetz, FG, Frey, H, Mulhaupt, R. Ethene and propene copolymers containing silsesquioxane side groups. Macromolecules. 1997;30: 10 28182824. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32. Harrison, PG. Silicate cages: precursors to new materials. J Organomet Chem. 1997;542: 2 141183. .

  • 33. Baney, RH, Itoh, M, Sakakibara, A, Suzuki, T. Silsesquioxanes. Chem Rev. 1995;95: 5 14091430. .

  • 34. De Armitt, C, Wheeler, P. POSS keeps high temperature plastics flowing. Plast Addit Compd. 2008;10: 4 3639. .

  • 35. Bolln, C, Tsuchida, A, Frey, H, Mulhaupt, R. Thermal properties of the homologous series of 8-fold alkyl-substituted octasilsesquioxanes. Chem Mater. 1997;9: 6 14751479. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36. Fina A , Tabuani D, Frache A, Boccaleri E, Camino G. In: Le Bras M, Wilkie C, Bourbigot S, editors. Fire retardancy of polymers: new applications of mineral fillers. Cambridge, UK: Royal Society of Chemistry, 2005. p. 20220.

    • Search Google Scholar
    • Export Citation
  • 37. Fina, A, Tabuani, D, Carniato, F, Frache, A, Boccaleri, E, Camino, G. Polyhedral oligomeric silsesquioxanes (POSS) thermal degradation. Thermochim Acta. 2006;440: 1 3642. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38. Fina, A, Tabuani, D, Frache, A, Camino, G. Polypropylene–polyhedral oligomeric silsesquioxanes (POSS) nanocomposites. Polymer. 2005;46:78557866. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39. Rosenberg, SD, Walburn, JJ, Ramsden, HE. Preparation of some arylchlorosilanes with arylmagnesium chlorides. J Org Chem. 1957;22: 12 16061607. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40. Breed, LW, WJ Haggerty Jr. Aryl and alkylchlorodialkoxysilanes. J Org Chem. 1960;25: 1 126128. .

  • 41. Feher, FJ, Newman, DA. Enhanced silylation reactivity of a model for silica surfaces. J Am Chem Soc. 1990;112: 5 19311936. .

  • 42. Feher, FJ, Budzichowski, TA, Blanski, RL, Weller, KJ, Ziller, JW. Facile syntheses of new incompletely condensed polyhedral oligosilsesquioxanes: [(c-C5H9)7Si7O9(OH)3], [(c-C7H13)7Si7O9(OH)3], and [(c-C7H13)6Si6O7(OH)4]. Organometallics. 1991;10: 7 25262528. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43. Shimadzu DTG-60/60H Instruction manual Shimadzu corporation. Kyoto, Japan: Analytical & Measuring Instruments Division; 2000.

  • 44. Wu, YC, Kuo, SW. Synthesis and characterization of polyhedral oligomeric silsesquioxane (POSS) with multifunctional benzoxazine groups through click chemistry. Polymer. 2010;51: 17 39483955. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45. Hato, MJ, Ray, SS, Luyt, AS. Thermal and rheological properties of POSS-containing poly(methyl methacrylate) nanocomposites. Adv Sci Lett. 2010;3: 2 123129. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46. Calzaferri G , Hoffmann R. The symmetrical octasilasesquioxanes X8Si8O12: electronic structure and reactivity. J Chem Soc Dalton Trans. 1991; 91728.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
1
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Apr 2024 85 1 1
May 2024 13 1 1
Jun 2024 22 0 0
Jul 2024 22 0 0
Aug 2024 44 0 0
Sep 2024 13 0 0
Oct 2024 0 0 0