Seven variously substituted derivatives of polyhedral oligomeric silsesquioxanes (POSSs) with general formula R7R′1 (SiO1.5)8, where R- and R′- were a cyclopentyl and a substituted phenyl group, respectively, were prepared in this study, and their compositions were checked by elemental analysis, 1H NMR and 13C NMR spectroscopy. The compounds obtained were studied by TG and DTA techniques, in both flowing nitrogen and static air atmospheres, to draw useful information about their resistance to thermal degradation. Experiments, performed in the 35–700 °C temperature range, showed different behaviours between the two used atmospheres. The formation of volatile compounds only, with a near-complete mass loss, was observed under nitrogen; by contrast, in oxidative environment, a solid residue (≈50% in every case) was obtained because of the formation of SiO2 as indicated by the FTIR spectra performed. The results obtained for the various compounds investigated were discussed and compared with each other, and heat resistance classifications in the studied environments were made.
1. Zaitsev, VS, Filimonov, DS, Presnyakov, IA, Gambino, RJ, Chu, B. Physical and chemical properties of magnetite and magnetite-polymer nanoparticles and their colloidal dispersions. J Colloid Interf Sci. 1999;212:49–57. .
2. Haraguchi, K, Farnworth, R, Ohbayashi, A, Takehisa, T. Compositional effects on mechanical properties of nanocomposite hydrogels composed of poly (N,N-dimethylacrylamide) and clay. Macromolecules. 2003;36:5732–5741. .
3. Hu, Y, Chen, JF, Zhang, HT, Li, TW, Xue, X. Using silicon dioxide nanosphere gaps to confine growth of single-crystal nickel sulfide nanowires in polyacrylamide gel. Scripta Mater. 2006;55:131–134. .
4. Yu, SL, Zuo, XT, Bao, RL, Xu, X, Wang, J, Xu, J. Effect of SiO2 nanoparticle addition on the characteristics of a new organic-inorganic hybrid membrane. Polymer. 2009;50:553–559. .
5. Chrissafis, K, Paraskevopoulos, KM, Tsiaoussis, I, Bikiaris, D. Comparative study of the effect of different nanoparticles on the mechanical properties, permeability, and thermal degradation mechanism of HDPE. J Appl Polym Sci. 2009;112:1606–1618. .
6. Avella, M, Cosco, S, Di Lorenzo, ML, Di Pace, E, Errico, ME. Influence of CaCO3 nanoparticles shape on thermal and crystallization behavior of isotactic polypropylene based nanocomposites. J Therm Anal Calorim. 2005;80: 1 131–136. .
7. Ramezanzadeh, B, Attar, MM, Farzam, M. Effect of ZnO nanoparticles on the thermal and mechanical properties of epoxy-based nanocomposite. J Therm Anal Calorim. 2011;103: 2 731–739. .
8. Viratyaporn, W, Lehman, RL. Effect of nanoparticles on the thermal stability of PMMA nanocomposites prepared by in situ bulk polymerization. J Therm Anal Calorim. 2011;103: 1 267–273. .
9. Lichtenhan JD , Schwab JJ. Bridging the centuries with SAMPE's materials and processes technology. In: Loud S, editor. 45th international SAMPE symposium and exhibition. Society for the advancement of material and process engineering (SAMPE), Covina, CA. vol. 45, p. 185–191, 2000.
10. Phillips SH , Blanski RL, Svejda SA, Haddad TS, Lee A, Lichtenhan JD, Feher FJ, Mather PT, Hsiao BS. New insight into the structure-property relationships of hybrid (inorganic/organic) POSStm thermoplastics. Mater Res Soc Symp Proc. 2000;628:CC4.6.1–10.
11. Blanski, RL, Phillips, SH, Chaffee, K, Lichtenhan, JD, Lee, A, Geng, HP. The synthesis of hybrid materials by the blending of polyhedral oligosilsesquioxanes into organic polymers. Polym Prepr. 2000;41:585–586.
12. Fina, A, Monticelli, O, Camino, G. POSS-based hybrids by melt/reactive blending. J Mater Chem. 2010;20:9297–9305. .
13. Cordes, DB, Lickiss, PD, Rataboul, F. Recent developments in the chemistry of cubic polyhedral oligosilsesquioxanes. Chem Rev. 2010;110:2081–2173. .
14. Voronkov, MG, Vavrent'yev, VI. Polyhedral oligosilsesquioxanes and their homo derivatives. Top Curr Chem. 1982;102:199–236.
15. Mather, PT, Jeon, HG, Haddad, TS. Strain recovery in POSS hybrid thermoplastics. Polym Prepr. 2000;41: 1 528–529.
16. Haddad, TS, Choe, E, Lichtenhan, JD. Hybrid styryl-based Polyhedral Oligomeric Silsesquioxane (POSS) polymers. Mater Res Soc Symp Proc. 1996;435:25–32. .
17. Haddad, TS, Stapleton, R, Jeon, HG, Mather, PT, Lichtenhan, JD, Phillips, SH. Nanostructured hybrid organic/inorganic materials: silsesquioxane modified plastics. Polym Prepr. 1999;40: 1 496–497.
18. Lee, A, Lichtenhan, JD. Viscoelastic responses of polyhedral oligosilsesquioxane reinforced epoxy systems. Macromolecules. 1998;31: 15 4970–4974. .
19. dell Erba, IE, Williams, RJJ. Epoxy networks modified by multifunctional polyhedral oligomeric silsesquioxanes (POSS) containing amine groups. J Therm Anal Calorim. 2008;93: 1 95–100. .
20. Villanueva, M, Martín-Iglesias, JL, Rodríguez-Añón, JA. Proupín-Castiñeiras J. Thermal study of an epoxy system DGEBA (n=0)/mXDA modified with POSS. J Therm Anal Calorim. 2009;96: 2 575–582. .
21. Wang, XT, Yang, YK, Yang, ZF, Zhou, XP, Liao, YG, Lv, CC, Chang, FC, Xie, XL. Thermal properties and liquid crystallinity of side-chain azobenzene copolymer containing pendant polyhedral oligomeric silsequioxanes. J Therm Anal Calorim. 2010;102: 2 739–744. .
22. Lichtenhan, JD, Otonari, YA, Carr, MJ. Linear hybrid polymer building blocks: methacrylate-functionalized polyhedral oligomeric silsesquioxane monomers and polymers. Macromolecules. 1995;28: 24 8435–8437. .
23. Haddad, TS, Lichtenhan, JD. Hybrid organic–inorganic thermoplastics: styryl-based polyhedral oligomeric silsesquioxane polymers. Macromolecules. 1996;29: 22 7302–7304. .
24. Mantz, RA, Jones, PF, Chaffee, KP, Lichtenhan, JD, Ismail, MK, Burmeister, M. Thermolysis of Polyhedral Oligomeric Silsesquioxane (POSS) macromers and POSS–Siloxane copolymers. Chem Mater. 1996;8: 6 1250–1259. .
25. Xu, HY, Kuo, SW, Lee, JY, Chang, FC. Glass transition temperatures of poly(hydroxystyrene-co-vinylpyrrolidone-co-isobutylstyryl polyhedral oligosilsesquioxanes). Polymer. 2002;43: 19 5117–5124. .
26. Pellice, SA, Fasce, DP, Williams, RJJ. Properties of epoxy networks derived from the reaction of diglycidyl ether of bisphenol A with polyhedral oligomeric silsesquioxanes bearing OH-functionalized organic substituents. J Polym Sci Part B: Polym Phys. 2003;41: 13 1451–1461. .
27. Philips SH , Gonzalez RI, Chaffee KP, Haddad TS, Hoflund GB, Hsiao BS, Fu BX. Remarkable AO resistance of POSS inorganic/organic polymer. In Loud S, editor. Bridging the centuries with SAMPE's materials and processes technology. 45th International SAMPE Symposium and Exhibition. Society for the Advancement of Material and Process Engineering (SAMPE), Covina, CA. 2000; 45: 1921–31.
28. Huang, JC, He, CB, Xiao, Y, Mya, KY, Dai, J, Siow, YP. Polyimide/POSS nanocomposites: interfacial interaction, thermal properties and mechanical properties. Polymer. 2003;44: 16 4491–4499. .
29. Fu, BX, Namani, M, Lee, A. Influence of phenyl-trisilanol polyhedral silsesquioxane on properties of epoxy network glasses. Polymer. 2003;44: 25 7739–7747. .
30. Bharadwaj, RK, Berry, RJ, Farmer, BL. Molecular dynamics simulation study of norbornene—POSS polymers. Polymer. 2000;41: 19 7209–7221. .
31. Tsuchida, A, Bolln, C, Sernetz, FG, Frey, H, Mulhaupt, R. Ethene and propene copolymers containing silsesquioxane side groups. Macromolecules. 1997;30: 10 2818–2824. .
32. Harrison, PG. Silicate cages: precursors to new materials. J Organomet Chem. 1997;542: 2 141–183. .
33. Baney, RH, Itoh, M, Sakakibara, A, Suzuki, T. Silsesquioxanes. Chem Rev. 1995;95: 5 1409–1430. .
34. De Armitt, C, Wheeler, P. POSS keeps high temperature plastics flowing. Plast Addit Compd. 2008;10: 4 36–39. .
35. Bolln, C, Tsuchida, A, Frey, H, Mulhaupt, R. Thermal properties of the homologous series of 8-fold alkyl-substituted octasilsesquioxanes. Chem Mater. 1997;9: 6 1475–1479. .
36. Fina A , Tabuani D, Frache A, Boccaleri E, Camino G. In: Le Bras M, Wilkie C, Bourbigot S, editors. Fire retardancy of polymers: new applications of mineral fillers. Cambridge, UK: Royal Society of Chemistry, 2005. p. 202–20.
37. Fina, A, Tabuani, D, Carniato, F, Frache, A, Boccaleri, E, Camino, G. Polyhedral oligomeric silsesquioxanes (POSS) thermal degradation. Thermochim Acta. 2006;440: 1 36–42. .
38. Fina, A, Tabuani, D, Frache, A, Camino, G. Polypropylene–polyhedral oligomeric silsesquioxanes (POSS) nanocomposites. Polymer. 2005;46:7855–7866. .
39. Rosenberg, SD, Walburn, JJ, Ramsden, HE. Preparation of some arylchlorosilanes with arylmagnesium chlorides. J Org Chem. 1957;22: 12 1606–1607. .
40. Breed, LW, WJ Haggerty Jr. Aryl and alkylchlorodialkoxysilanes. J Org Chem. 1960;25: 1 126–128. .
41. Feher, FJ, Newman, DA. Enhanced silylation reactivity of a model for silica surfaces. J Am Chem Soc. 1990;112: 5 1931–1936. .
42. Feher, FJ, Budzichowski, TA, Blanski, RL, Weller, KJ, Ziller, JW. Facile syntheses of new incompletely condensed polyhedral oligosilsesquioxanes: [(c-C5H9)7Si7O9(OH)3], [(c-C7H13)7Si7O9(OH)3], and [(c-C7H13)6Si6O7(OH)4]. Organometallics. 1991;10: 7 2526–2528. .
43. Shimadzu DTG-60/60H Instruction manual Shimadzu corporation. Kyoto, Japan: Analytical & Measuring Instruments Division; 2000.
44. Wu, YC, Kuo, SW. Synthesis and characterization of polyhedral oligomeric silsesquioxane (POSS) with multifunctional benzoxazine groups through click chemistry. Polymer. 2010;51: 17 3948–3955. .
45. Hato, MJ, Ray, SS, Luyt, AS. Thermal and rheological properties of POSS-containing poly(methyl methacrylate) nanocomposites. Adv Sci Lett. 2010;3: 2 123–129. .
46. Calzaferri G , Hoffmann R. The symmetrical octasilasesquioxanes X8Si8O12: electronic structure and reactivity. J Chem Soc Dalton Trans. 1991; 917–28.