Authors:
Soumya Sarkar Non-oxide Ceramic and Composite Division, Central Glass and Ceramic Research Institute (CSIR), Kolkata 700032, India

Search for other papers by Soumya Sarkar in
Current site
Google Scholar
PubMed
Close
and
Probal Kr. Das Non-oxide Ceramic and Composite Division, Central Glass and Ceramic Research Institute (CSIR), Kolkata 700032, India

Search for other papers by Probal Kr. Das in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Non-isothermal oxidation kinetics of single- and multi-walled carbon nanotubes (CNTs) have been studied using thermogravimetry up to 1273 K in ambient using multiple heating rates. One single heating rate based model-fitting technique and four multiple heating rates based model-free isoconversional methods were used for this purpose. Depending on nanotube structure and impurity content, average activation energy (Ea), pre-exponential factor (A), reaction order (n), and degradation mechanism changed considerably. For multi-walled CNTs, Ea and A evaluated using model-fitting technique were ranged from 142.31 to 178.19 kJ mol−1, respectively, and from 1.71 × 105 to 5.81 × 107 s−1, respectively, whereas, Ea for single-walled CNTs ranged from 83.84 to 148.68 kJ mol−1 and A from 2.55 × 102 to 1.18 × 107 s−1. Although, irrespective of CNT type, the model-fitting method resulted in a single kinetic triplet i.e., Ea, A, and reaction mechanism, model-free isoconversional methods suggested that thermal oxidation of these nanotubes could be either a simple single-step mechanism with almost constant activation energy throughout the reaction span or a complex process involving multiple mechanisms that offered varying Ea with extent of conversion. Criado method was employed to predict degradation mechanism(s) of these CNTs.

  • 1. Terrones, M. Science and technology of the twenty-first century: synthesis, properties, and applications of carbon nanotubes. Annu Rev Mater Res. 2003;33:419501. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2. Breuer, O, Sundararaj, U. Big returns from small fibers: a review of polymer/carbon nanotube composites. Polym Compos. 2004;25:630641. .

  • 3. Samal, SS, Bal, S. Carbon nanotube reinforced ceramic matrix composites—a review. J Miner Mater Character Eng. 2008;7: 4 355370.

    • Search Google Scholar
    • Export Citation
  • 4. Bakshi, SR, Lahiri, D, Agarwal, A. Carbon nanotube reinforced metal matrix composites–a review. Int Mater Rev. 2010;55: 1 4164. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5. Song, W-l, Cao, M-S, Hou, Z-l, Yuan, J, Fang, X-Y. High-temperature microwave absorption and evolutionary behavior of multiwalled carbon nanotube nanocomposite. Scr Mater. 2009;61:201204. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6. Chen, Z-K, Yang, J-P, Ni, Q-Q, Fu, S-Y, Huang, Y-G. Reinforcement of epoxy resins with multi-walled carbon nanotubes for enhancing cryogenic mechanical properties. Polymer. 2009;50:47534759. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7. Illeková, E, Csomorová, K. Kinetics of oxidation in various forms of carbon. J Therm Anal Calorim. 2005;80:103108. .

  • 8. Brukh, R, Mitra, S. Kinetics of carbon nanotube oxidation. J Mater Chem. 2007;17:619623. .

  • 9. Vignes, A, Dufaud, O, Perrin, L, Thomas, D, Bouillard, J, Janès, A, et al. Thermal ignition and self-heating of carbon nanotubes: from thermokinetic study to process safety. Chem Eng Sci. 2009;64:42104221. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10. Sarkar S , Das PK, Bysakh S, Dasgupta K. Evaluation of thermal stability of commercial multiwalled carbon nanotubes. First Asian Carbon Conference, New Delhi, 2009.

    • Search Google Scholar
    • Export Citation
  • 11. Sarkar, S, Das, PK, Bysakh, S. Effect of heat treatment on morphology and thermal decomposition kinetics of multiwalled carbon nanotubes. Mater Chem Phys. 2011;125:161167. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12. Al-Othman, AA, Al-Farhan, KA, Mahfouz, RM. Kinetic analysis of nonisothermal decomposition of (Mg5(CO3)4(OH)2·4H2O/5Cr2O3) crystalline mixture. J King Saud Univ (Sci). 2009;21:133143. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13. Janković, B, Mentus, S, Jelic, D. A kinetic study of non-isothermal decomposition process of anhydrous nickel nitrate under air atmosphere. Physica B. 2009;404:22632269. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14. Boonchom, B, Danvirutai, C, Thongkam, M. Non-isothermal decomposition kinetics of synthetic serrabrancaite (MnPO4·H2O) precursor in N2 atmosphere. J Therm Anal Calorim. 2010;99:357362. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15. Boonchom, B. Kinetic and thermodynamic studies of MgHPO4·3H2O by non-isothermal decomposition data. J Therm Anal Calorim. 2009;98:863871. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16. Jiao-qiang, Z, Hong-xu, G, Li-hong, S, Rong-zu, H, Feng-qi, Z, Bo-zhou, W. Non-isothermal thermal decomposition reaction kinetics of 2-nitroimino-5-nitro-hexahydro-1,3,5-triazine (NNHT). J Hazard Mater. 2009;167:205208. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17. Wang, Y-F, Liu, J-F, Xian, H-D, Zhao, G-L. Synthesis, crystal structure, and kinetics of the thermal decomposition of the nickel(ii) complex of the Schiff base 2-[(4-Methylphenylimino)methyl]-6-methoxyphenol. Molecules. 2009;14:25822593. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18. Chen, Y, Wang, Q. Thermal oxidative degradation kinetics of flame-retarded polypropylene with intumescent flame-retardant master batches in situ prepared in twin-screw extruder. Polym Degrad Stabil. 2007;92:280291. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19. Doğan, F, Kaya, I, Bilici, A. Non-isothermal degradation kinetics of poly (2,2′-dihydroxybiphenyl). Polym Bull. 2009;63:267282. .

  • 20. Doğan, F, Kaya, I, Bilici, A, Saçak, M. Thermal decomposition kinetics of azomethine oligomer and its some metal complexes. J Appl Polym Sci. 2010;118:547556.

    • Search Google Scholar
    • Export Citation
  • 21. Brown, ME, Maciejewski, M, Vyazovkin, S, Nomen, R, Sempere, J, Burnham, A, et al. Computational aspects of kinetic analysis Part A: the ICTAC kinetics project-data. Thermochim Acta. 2000;355:125143. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22. Vyazovkin, S. Computational aspects of kinetic analysis. Part C. The ICTAC kinetics project-the light at the end of the tunnel?. Thermochim Acta. 2000;355:155163. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23. Vyazovkin S . Reply to “What is meant by the term ‘variable activation energy’ when applied in the kinetics analyses of solid state decompositions (crystolysis reactions)?”. Thermochim Acta. 2003;397:26971.

    • Search Google Scholar
    • Export Citation
  • 24. Pratap, A, Rao, TLS, Lad, KN, Dhurandhar, HD. Isoconversional vs. model fitting methods: a case study of crystallization kinetics of a Fe-based metallic glass. J Therm Anal Calorim. 2007;89:399405. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25. Burnham, AK, Dinh, LN. A comparison of isoconversional and model-fitting approaches to kinetic parameter estimation and application predictions. J Therm Anal Calorim. 2007;89:479490. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26. Janković, B. Kinetic analysis of the nonisothermal decomposition of potassium metabisulfite using the model-fitting and isoconversional (model-free) methods. Chem Eng J. 2008;139:128135. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27. Galwey, AK. What is meant by the term ‘variable activation energy’ when applied in the kinetic analyses of solid state decompositions (crystolysis reactions)?. Thermochim Acta. 2003;397:249268. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28. Janković B , AdnaÐević B, Jovanović J. Application of model-fitting and model-free kinetics to the study of non-isothermal dehydration of equilibrium swollen poly (acrylic acid) hydrogel: thermogravimetric analysis,. Thermochim Acta. 2007;452:10615.

    • Search Google Scholar
    • Export Citation
  • 29. Pourghahramani, P, Forssberg, E. Reduction kinetics of mechanically activated hematite concentrate with hydrogen gas using nonisothermal methods. Thermochim Acta. 2007;454:6977. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30. Serra, R, Nomen, R, Sempere, J. The non-parametric kinetics: a new method for the kinetic study of thermoanalytical data. J Therm Anal Calorim. 1998;52:933943. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31. Serra, R, Nomen, R, Sempere, J. A new method for the kinetic study of thermoanalytical data: the non-parametric kinetics method. Thermochim Acta. 1998;316:3745. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32. Criado, JM, Málek, J, Ortega, A. Applicability of the master plots in kinetic analysis of a non-isothermal rate. Thermochim Acta. 1989;147:377385. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33. Tiptipakorn, S, Damrongsakkul, S, Ando, S, Hemvichian, K, Rimdusit, S. Thermal degradation behaviors of polybenzoxazine and silicon-containing polyimide blends. Polym Degrad Stabil. 2007;92:12651278. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34. Tang, W, Liu, Y, Zhang, H, Wang, C. New approximate formula for Arrhenius temperature integral. Thermochim Acta. 2003;408:3943. .

  • 35. Senum, GI, Yang, RT. Rational approximations of the integral of the Arrhenius function. J Therm Anal Calorim. 1977;11:445449. .

  • 36. Flynn, JH. The ‘temperature integral’: its use and abuse. Thermochim Acta. 1997;300:8392. .

  • 37. Tesner PA . The activation energy of gas reactions with solid carbon. Eight International Symposium on Combustion, Williams & Wilkins Co., Baltimore, USA, 1962, pp. 80713; Discussion by Essenhigh RH. pp. 81314.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
1
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
May 2024 5 0 0
Jun 2024 6 0 0
Jul 2024 25 0 0
Aug 2024 41 0 0
Sep 2024 33 0 0
Oct 2024 245 0 0
Nov 2024 42 0 0