View More View Less
  • 1 Non-oxide Ceramic and Composite Division, Central Glass and Ceramic Research Institute (CSIR), Kolkata 700032, India
Restricted access

Abstract

Non-isothermal oxidation kinetics of single- and multi-walled carbon nanotubes (CNTs) have been studied using thermogravimetry up to 1273 K in ambient using multiple heating rates. One single heating rate based model-fitting technique and four multiple heating rates based model-free isoconversional methods were used for this purpose. Depending on nanotube structure and impurity content, average activation energy (Ea), pre-exponential factor (A), reaction order (n), and degradation mechanism changed considerably. For multi-walled CNTs, Ea and A evaluated using model-fitting technique were ranged from 142.31 to 178.19 kJ mol−1, respectively, and from 1.71 × 105 to 5.81 × 107 s−1, respectively, whereas, Ea for single-walled CNTs ranged from 83.84 to 148.68 kJ mol−1 and A from 2.55 × 102 to 1.18 × 107 s−1. Although, irrespective of CNT type, the model-fitting method resulted in a single kinetic triplet i.e., Ea, A, and reaction mechanism, model-free isoconversional methods suggested that thermal oxidation of these nanotubes could be either a simple single-step mechanism with almost constant activation energy throughout the reaction span or a complex process involving multiple mechanisms that offered varying Ea with extent of conversion. Criado method was employed to predict degradation mechanism(s) of these CNTs.

  • 1. Terrones, M. Science and technology of the twenty-first century: synthesis, properties, and applications of carbon nanotubes. Annu Rev Mater Res. 2003;33:419501. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2. Breuer, O, Sundararaj, U. Big returns from small fibers: a review of polymer/carbon nanotube composites. Polym Compos. 2004;25:630641. .

  • 3. Samal, SS, Bal, S. Carbon nanotube reinforced ceramic matrix composites—a review. J Miner Mater Character Eng. 2008;7: 4 355370.

    • Search Google Scholar
    • Export Citation
  • 4. Bakshi, SR, Lahiri, D, Agarwal, A. Carbon nanotube reinforced metal matrix composites–a review. Int Mater Rev. 2010;55: 1 4164. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5. Song, W-l, Cao, M-S, Hou, Z-l, Yuan, J, Fang, X-Y. High-temperature microwave absorption and evolutionary behavior of multiwalled carbon nanotube nanocomposite. Scr Mater. 2009;61:201204. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6. Chen, Z-K, Yang, J-P, Ni, Q-Q, Fu, S-Y, Huang, Y-G. Reinforcement of epoxy resins with multi-walled carbon nanotubes for enhancing cryogenic mechanical properties. Polymer. 2009;50:47534759. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7. Illeková, E, Csomorová, K. Kinetics of oxidation in various forms of carbon. J Therm Anal Calorim. 2005;80:103108. .

  • 8. Brukh, R, Mitra, S. Kinetics of carbon nanotube oxidation. J Mater Chem. 2007;17:619623. .

  • 9. Vignes, A, Dufaud, O, Perrin, L, Thomas, D, Bouillard, J, Janès, A, et al. Thermal ignition and self-heating of carbon nanotubes: from thermokinetic study to process safety. Chem Eng Sci. 2009;64:42104221. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10. Sarkar S , Das PK, Bysakh S, Dasgupta K. Evaluation of thermal stability of commercial multiwalled carbon nanotubes. First Asian Carbon Conference, New Delhi, 2009.

    • Search Google Scholar
    • Export Citation
  • 11. Sarkar, S, Das, PK, Bysakh, S. Effect of heat treatment on morphology and thermal decomposition kinetics of multiwalled carbon nanotubes. Mater Chem Phys. 2011;125:161167. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12. Al-Othman, AA, Al-Farhan, KA, Mahfouz, RM. Kinetic analysis of nonisothermal decomposition of (Mg5(CO3)4(OH)2·4H2O/5Cr2O3) crystalline mixture. J King Saud Univ (Sci). 2009;21:133143. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13. Janković, B, Mentus, S, Jelic, D. A kinetic study of non-isothermal decomposition process of anhydrous nickel nitrate under air atmosphere. Physica B. 2009;404:22632269. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14. Boonchom, B, Danvirutai, C, Thongkam, M. Non-isothermal decomposition kinetics of synthetic serrabrancaite (MnPO4·H2O) precursor in N2 atmosphere. J Therm Anal Calorim. 2010;99:357362. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15. Boonchom, B. Kinetic and thermodynamic studies of MgHPO4·3H2O by non-isothermal decomposition data. J Therm Anal Calorim. 2009;98:863871. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16. Jiao-qiang, Z, Hong-xu, G, Li-hong, S, Rong-zu, H, Feng-qi, Z, Bo-zhou, W. Non-isothermal thermal decomposition reaction kinetics of 2-nitroimino-5-nitro-hexahydro-1,3,5-triazine (NNHT). J Hazard Mater. 2009;167:205208. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17. Wang, Y-F, Liu, J-F, Xian, H-D, Zhao, G-L. Synthesis, crystal structure, and kinetics of the thermal decomposition of the nickel(ii) complex of the Schiff base 2-[(4-Methylphenylimino)methyl]-6-methoxyphenol. Molecules. 2009;14:25822593. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18. Chen, Y, Wang, Q. Thermal oxidative degradation kinetics of flame-retarded polypropylene with intumescent flame-retardant master batches in situ prepared in twin-screw extruder. Polym Degrad Stabil. 2007;92:280291. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19. Doğan, F, Kaya, I, Bilici, A. Non-isothermal degradation kinetics of poly (2,2′-dihydroxybiphenyl). Polym Bull. 2009;63:267282. .

  • 20. Doğan, F, Kaya, I, Bilici, A, Saçak, M. Thermal decomposition kinetics of azomethine oligomer and its some metal complexes. J Appl Polym Sci. 2010;118:547556.

    • Search Google Scholar
    • Export Citation
  • 21. Brown, ME, Maciejewski, M, Vyazovkin, S, Nomen, R, Sempere, J, Burnham, A, et al. Computational aspects of kinetic analysis Part A: the ICTAC kinetics project-data. Thermochim Acta. 2000;355:125143. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22. Vyazovkin, S. Computational aspects of kinetic analysis. Part C. The ICTAC kinetics project-the light at the end of the tunnel?. Thermochim Acta. 2000;355:155163. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23. Vyazovkin S . Reply to “What is meant by the term ‘variable activation energy’ when applied in the kinetics analyses of solid state decompositions (crystolysis reactions)?”. Thermochim Acta. 2003;397:26971.

    • Search Google Scholar
    • Export Citation
  • 24. Pratap, A, Rao, TLS, Lad, KN, Dhurandhar, HD. Isoconversional vs. model fitting methods: a case study of crystallization kinetics of a Fe-based metallic glass. J Therm Anal Calorim. 2007;89:399405. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25. Burnham, AK, Dinh, LN. A comparison of isoconversional and model-fitting approaches to kinetic parameter estimation and application predictions. J Therm Anal Calorim. 2007;89:479490. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26. Janković, B. Kinetic analysis of the nonisothermal decomposition of potassium metabisulfite using the model-fitting and isoconversional (model-free) methods. Chem Eng J. 2008;139:128135. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27. Galwey, AK. What is meant by the term ‘variable activation energy’ when applied in the kinetic analyses of solid state decompositions (crystolysis reactions)?. Thermochim Acta. 2003;397:249268. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28. Janković B , AdnaÐević B, Jovanović J. Application of model-fitting and model-free kinetics to the study of non-isothermal dehydration of equilibrium swollen poly (acrylic acid) hydrogel: thermogravimetric analysis,. Thermochim Acta. 2007;452:10615.

    • Search Google Scholar
    • Export Citation
  • 29. Pourghahramani, P, Forssberg, E. Reduction kinetics of mechanically activated hematite concentrate with hydrogen gas using nonisothermal methods. Thermochim Acta. 2007;454:6977. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30. Serra, R, Nomen, R, Sempere, J. The non-parametric kinetics: a new method for the kinetic study of thermoanalytical data. J Therm Anal Calorim. 1998;52:933943. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31. Serra, R, Nomen, R, Sempere, J. A new method for the kinetic study of thermoanalytical data: the non-parametric kinetics method. Thermochim Acta. 1998;316:3745. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32. Criado, JM, Málek, J, Ortega, A. Applicability of the master plots in kinetic analysis of a non-isothermal rate. Thermochim Acta. 1989;147:377385. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33. Tiptipakorn, S, Damrongsakkul, S, Ando, S, Hemvichian, K, Rimdusit, S. Thermal degradation behaviors of polybenzoxazine and silicon-containing polyimide blends. Polym Degrad Stabil. 2007;92:12651278. .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34. Tang, W, Liu, Y, Zhang, H, Wang, C. New approximate formula for Arrhenius temperature integral. Thermochim Acta. 2003;408:3943. .

  • 35. Senum, GI, Yang, RT. Rational approximations of the integral of the Arrhenius function. J Therm Anal Calorim. 1977;11:445449. .

  • 36. Flynn, JH. The ‘temperature integral’: its use and abuse. Thermochim Acta. 1997;300:8392. .

  • 37. Tesner PA . The activation energy of gas reactions with solid carbon. Eight International Symposium on Combustion, Williams & Wilkins Co., Baltimore, USA, 1962, pp. 80713; Discussion by Essenhigh RH. pp. 81314.

    • Search Google Scholar
    • Export Citation

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
Foundation
1969
Volumes
per Year
4
Issues
per Year
24
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
May 2021 0 2 0
Jun 2021 0 0 0
Jul 2021 1 0 0
Aug 2021 5 0 0
Sep 2021 1 0 0
Oct 2021 1 0 0
Nov 2021 0 0 0